Publications

2023[ to top ]
  • Active Label Refinement for Semantic Segmentation of Satellite Images. Pham, Minh Tuan; Wijesingha, Jayan; Kottke, Daniel; Herde, Marek; Huseljic, Denis; Sick, Bernhard; Wachendorf, Michael; Esch, Thomas. In arXiv e-prints, bl arXiv:2309.06159. 2023.
2022[ to top ]
  • Stream-Based Active Learning in Changing Environments under Verification Latency. Pham, Tuan. In Organic Computing -- Doctoral Dissertation Colloquium 2021, S. Tomforde, C. Krupitzer (reds.), bll 152–164. kassel university press, 2022.
  • Stream-based active learning for sliding windows under the influence of verification latency. Pham, Tuan; Kottke, Daniel; Krempl, Georg; Sick, Bernhard. In Machine Learning, 111(6), bll 2011–2036. Springer, 2022.
2021[ to top ]
  • Statistical Analysis of Pairwise Connectivity. Krempl, Georg; Kottke, Daniel; Pham, Tuan. In International Conference on Discovery Science (DS), Lecture Notes in Computer Science, bll 138–148. Springer, 2021.
  • scikit-activeml: A Library and Toolbox for Active Learning Algorithms. Kottke, Daniel; Herde, Marek; Minh, Tuan Pham; Benz, Alexander; Mergard, Pascal; Roghman, Atal; Sandrock, Christoph; Sick, Bernhard. In Preprints, bl 2021030194. 2021.
2020[ to top ]
  • Seeing Around Street Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using Doppler Radar. Scheiner, Nicolas; Kraus, Florian; Wei, Fangyin; Phan, Buu; Mannan, Fahim; Appenrodt, Nils; Ritter, Werner; Dickmann, Jurgen; Dietmayer, Klaus; Sick, Bernhard; Heide, Felix. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.
  • Improving Self-Adaptation For Multi-Sensor Activity Recognition with Active Learning. Pham Minh, T.; Kottke, D.; Tsarenko, A.; Gruhl, C.; Sick, B. In International Joint Conference on Neural Networks (IJCNN). IEEE, 2020.
2019[ to top ]
  • Tree Species Classification Based on Hybrid Ensembles of a Convolutional Neural Network (CNN) and Random Forest Classifiers. Knauer, Uwe; Styp von Rekowski, Cornelius; Stecklina, Marianne; Krokotsch, Tilman; Pham Minh, Tuan; Hauffe, Viola; Kilias, David; Ehrhardt, Ina; Sagischewski, Herbert; Chmara, Sergej; Seiffert, Udo. In Remote Sensing, 11(23), bl 2788. MDPI, 2019.
  • Generative Adversarial Networks for Operational Scenario Planning of Renewable Energy Farms: A Study on Wind and Photovoltaic. Schreiber, Jens; Jessulat, Maik; Sick, Bernhard. In International Conference on Artificial Neural Networks and Machine Learning (ICANN): Image Processing, bll 550–564. Springer, Cham, 2019.
2017[ to top ]
  • Identifying Representative Load Time Series for Load Flow Calculations. Henze, Janosch; Kneiske, Tanja; Braun, Martin; Sick, Bernhard. In Workshop on Data Analytics for Renewable Energy Integration (DARE), ECML PKDD, bll 83–93. Springer, Cham, Switzerland, 2017.
2016[ to top ]
  • Probabilistic Active Learning for Active Class Selection. Kottke, D.; Krempl, G.; Stecklina, M.; Styp von Rekowski, C.; Sabsch, T.; Pham Minh, T.; Deliano, M.; Spiliopoulou, M.; Sick, B. In Workshop on the Future of Interactive Learning Machines, NIPS, bll 1–9. Barcelona, Spain, 2016.
  • Generative Exponential Smoothing and Generative ARMA Models to Forecast Time-Variant Rates or Probabilities. Kalkowski, E.; Sick, B. In International Work-Conference on Time Series (ITISE): Selected Contributions, bll 75–88. Springer, Cham, Switzerland, 2016.
2015[ to top ]
  • Track-Based Forecasting of Pedestrian Behavior by Polynomial Approximation and Multilayer Perceptions. Goldhammer, M.; Köhler, S.; Doll, K.; Sick, B. In SAI Intelligent Systems Conference (IntelliSys), Studies in Computational Intelligence, bll 259–279. Springer, Cham, Switzerland, 2015.