Safety standards and norms of electronic systems

Module nameSafety standards and norms of electronic systems
Type of moduleCompulsory
Learning results,
competencies, qualification goals
The student is able to:
  • understand and apply international standards in the various sectors of industry,
  • derive and analyse procedures and methods in accordance with international standards,
  • derive and create requirements and specifications that meet international standards,
  • apply and to distinguish between general and sector-specific standards,
  • name and apply the different methods of certification.

Learning results with regard to the objectives of the course of study:
  • Gaining deeper insight into the mathematical and natural science areas
  • Gaining a deeper knowledge about the specific electrical basics
  • Acquiring enhanced and applied subject-specific basics
  • Identifying and classifying complex electro-technical and interdisciplinary tasks
  • Being confident in the ability to use and evaluate analytical methods
  • Being able to create and evaluate solving methods independently
  • Familiarising oneself with new areas of knowledge, running searches and assessing the results
  • Gaining important and profound experience in the area of practical technical skills and engineering activities
  • Working and researching in national and international contexts
Types of courses4 SWS (semester periods per week):       2 SWS lecture
                                                                 2 SWS exercise
Course contents
  • The correct application and interpretation of international guidelines, standards and norms
  • The meaning of certification and verification
  • Creation and design methods and procedures that are in accordance with international standards
  • Quality standards for hardware and software engineering
  • Structure and organisation of different standardisation committees and their tasks and activities
Teaching and learning methods
(forms of teaching and learning)
Lecture, presentation, learning by teaching, self-regulated learning, problem-based learning
Frequency of the module offeringWinter term
LanguageEnglish
Requirements for the
participation in the module
Prerequisites according to examination regulations
Student  workload180 h:   60 h attendance studies
             120 h personal studies
Academic performancesNone
Precondition for the
admission to the
examination performance
None
Examination performanceWritten exam 120-180 min. or oral exam 20-40 min.
Number of credits
of the module
6 credits
 
In charge of the moduleProf. Dr. Josef Börcsök, Mr. H. Gall (TÜV Rheinland)
Teacher of the moduleProf. Dr. Josef Börcsök and his co-workers
Forms of mediaProjector, black board, piece of paper
Literature references
  • Börcsök, Josef, Functional Safety - Basic Principles of Safety-related Systems Hüthig-Verlag Heidelberg, 2007
  • Börcsök, Josef, Electronic Safety Systems - Hardware Concepts, Models and Calculations, Hüthig-Verlag Heidelberg, 2004
  • IEC/EN 61508 (2010). International Standard: 61508 Functional safety of electrical electronic programmable electronic safety-related systems Part1-Part7, Geneva
  • IEC/EN 61511 (2010). International Standard: 61511 Functional safety - Safety instrumented systems for the process industry sector, Geneva
  • IEC 61131-3 (2003) Programmable controllers- part 3: Programming languages, International Electro-technical Commission
  • Kumamoto, H. and Henley, E. J., Probabilistic risk assessment and management for engineers and scientists, 2nd ed. New York: IEEE Press, 1996.
  • Birolini, A., Zuverlässigkeit von Geräten und Systemen. Springer eBook Collection Computer Science and Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.
  • Birolini, A., Reliability engineering: Theory and practice, 8th edition. New York NY: Springer Berlin Heidelberg, 2017.
  • Birolini, A., Reliability engineering: Theory and practice /  Alessandro Birolini, 5th ed. Berlin, New York: Springer, 2007.
  • Schnieder, L. and Hosse, R. S., Leitfaden Safety of the Intended Functionality: Verfeinerung der Sicherheit der Sollfunktion auf dem Weg zum autonomen Fahren /  Lars Schnieder, René S. Hosse, Second edition. essentials. Wiesbaden: Springer Vieweg, 2020.
  • Montenegro, S., Sichere und fehlertolerante Steuerungen: Entwicklung sicherheitsrelevanter Systeme. München, Wien: Carl Hanser Verlag, 1999.
  • Goble, W. M., Control systems safety evaluation and reliability, 3rd ed. ISA resources for measurement and control series. Research Triangle Park, N.C: International Society of Automation, 2010.
  • Goble, W. M. and Goble, W. M. E. c. s. r., Control systems safety evaluation and reliability, 2nd ed. Resources for measurement and control series. Research Triangle Park, N.C. ISA, 1998.
  • Schnieder, L. and Hosse, R. S., Leitfaden Safety of the Intended Functionality: Verfeinerung der Sicherheit der Sollfunktion auf dem Weg zum autonomen Fahren /  Lars Schnieder, René S. Hosse, Second edition. essentials. Wiesbaden: Springer Vieweg, 2020.
  • Ross, H.-L., Funktionale Sicherheit im Automobil: ISO 26262, Systemengineering auf Basis eines Sicherheitslebenszyklus und bewährten Managementsystemen. München: Carl Hanser Verlag GmbH & Co. KG, 2014. www.hanser-elibrary.com/doi/book/10.3139/9783446438408.
  • Gebhardt, V., Rieger, G. M., Mottok, J., and Gießelbach, C., Funktionale Sicherheit nach ISO 26262: Ein Praxisleitfaden zur Umsetzung, 1. Auflage. Heidelberg: dpunkt.verlag, 2013. nbn-resolving.org/urn:nbn:de:bsz:31-epflicht-1301980.
  • Schnieder, L. and Hosse, R. S., Leitfaden Safety of the Intended Functionality: Verfeinerung der Sicherheit der Sollfunktion auf dem Weg zum autonomen Fahren /  Lars Schnieder, René S. Hosse, Second edition. essentials. Wiesbaden: Springer Vieweg, 2020.

                                                 Back to Modules page