Safety Electronics in Vehicle Systems

Module nameSafety Electronics in Vehicle Systems
Type of moduleSelectable mandatory module
Learning results,
competencies, qualification goals
The student is able to:
Students are familiar with the basic approach to the development of safety structures in a vehicle according to the state of the art. The students are now able to understand the different safety architectures on the basis of functional safety.

Learning results with regard to the objectives of the course of study:
  • Gaining deeper insight into the mathematical and natural science areas
  • Gaining a deeper knowledge about the specific electrical fundamentals
  • Acquiring enhanced and applied subject-specific basics
  • Identifying and classifying complex electro-technical and interdisciplinary tasks
  • Being confident in the ability to apply and evaluate analytical methods
  • Being able to create and evaluate solving methods independently
  • Familiarising oneself with new areas of knowledge, running searches and assessing the results
  • Gaining important and profound experience in the area of practical technical skills and engineering activities
  • Working and researching in national and international contexts
Types of courses4 SWS (semester periods per week):       2 SWS lecture
                                                                 2 SWS exercise
Course contents
  • Introduction to the probability theory
  • Reliability and reliability parameters
  • Standards of reliability and safety
  • Terms and parameters
  • Requirements for a failure detection
  • Risk and hazard
  • Risk and hazard analysis
  • Example: EPS steering system in a vehicle
  • Reliability and safety technology
  • Backup methods
  • Calculation methods
  • Simplifications
  • Reliability of complex systems
  • Calculation of safety parameters
  • Reliability models for hardware and software
  • Provision of safety verification
  • Important estimation techniques
Teaching and learning methods
(forms of teaching and learning)
Lecture, presentation, learning by teaching, self-regulated learning, problem-based learning
Frequency of the module offeringSummer term / Winter term
LanguageEnglish
Recommended (substantive) requirements for the participation in the moduleBasics in mathematics
Requirements for the
participation in the module
Prerequisites according to examination regulations
Student  workload180 h:   60 h attendance studies
             120 h personal studies
Academic performancesNone
Precondition for the
admission to the
examination performance
None
Examination performanceDepending on the number of participants: written exam 60 – 180 min. or oral exam 20 – 40 min.
Number of credits
of the module
6 credits and 1 credit of them applies to the integrated key competencies
 
In charge of the moduleProf. Dr. Josef Börcsök
Teacher of the moduleDr. –Ing. Ossmane Krini
Forms of mediaProjector, black board, piece of paper, demonstrations and design work at the PC
Literature references
  • Börcsök, Josef, Functional Safety- Basic Principles of Safety-related Systems Hüthig-Verlag Heidelberg, 2007
  • Börcsök, Josef, Electronic Safety Systems - Hardware Concepts, Models and Calculations, Hüthig-Verlag Heidelberg, 2004
  • IEC/EN 61508 (2010). International Standard: 61508 Functional safety of electrical electronic programmable electronic safety-related systems Part1-Part7
  • ISO 26262 Version 1 2012
  • Martin Hillenbrand, Funktionale Sicherheit nach ISO 26262 in der Konzeptphase der Entwicklung von Elektrik / Elektronik Architekturen von Fahrzeugen, Karlsruher Institut für Technologie (KIT)
  • Ross, H.-L., Funktionale Sicherheit im Automobil: Die Herausforderung für Elektromobilität und automatisiertes Fahren, 2., vollständig überarbeitete Auflage. Hanser eLibrary. München: Carl Hanser Verlag GmbH & Co. KG, 2019.
  • Ross, H.-L., Funktionale Sicherheit im Automobil: ISO 26262, Systemengineering auf Basis eines Sicherheitslebenszyklus und bewährten Managementsystemen. München: Carl Hanser Verlag GmbH & Co. KG, 2014. www.hanser-elibrary.com/doi/book/10.3139/9783446438408.
  • Hillenbrand, M., Funktionale Sicherheit nach ISO 26262 in der Konzeptphase der Entwicklung von Elektrik/Elektronik Architekturen von Fahrzeugen. Erscheinungsort nicht ermittelbar: KIT Scientific Publishing, 2012. directory.doabooks.org/handle/20.500.12854/48217.
  • Gebhardt, V., Rieger, G. M., Mottok, J., and Gießelbach, C., Funktionale Sicherheit nach ISO 26262: Ein Praxisleitfaden zur Umsetzung, 1. Auflage. Heidelberg: dpunkt.verlag, 2013. nbn-resolving.org/urn:nbn:de:bsz:31-epflicht-1301980.
  • Montenegro, S., Sichere und fehlertolerante Steuerungen: Entwicklung sicherheitsrelevanter Systeme. München, Wien: Carl Hanser Verlag, 1999.
  • Schnieder, L. and Hosse, R. S., Leitfaden Safety of the Intended Functionality: Verfeinerung der Sicherheit der Sollfunktion auf dem Weg zum autonomen Fahren /  Lars Schnieder, René S. Hosse, Second edition. essentials. Wiesbaden: Springer Vieweg, 2020.
  • Kumamoto, H. and Henley, E. J., Probabilistic risk assessment and management for engineers and scientists, 2nd ed. New York: IEEE Press, 1996.
  • Birolini, A., Zuverlässigkeit von Geräten und Systemen. Springer eBook Collection Computer Science and Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.
  • Birolini, A., Reliability engineering: Theory and practice, 8th edition. New York NY: Springer Berlin Heidelberg, 2017.
  • Birolini, A., Reliability engineering: Theory and practice /  Alessandro Birolini, 5th ed. Berlin, New York: Springer, 2007.
  • Schnieder, L. and Hosse, R. S., Leitfaden Safety of the Intended Functionality: Verfeinerung der Sicherheit der Sollfunktion auf dem Weg zum autonomen Fahren /  Lars Schnieder, René S. Hosse, Second edition. essentials. Wiesbaden: Springer Vieweg, 2020.
  • Montenegro, S., Sichere und fehlertolerante Steuerungen: Entwicklung sicherheitsrelevanter Systeme. München, Wien: Carl Hanser Verlag, 1999.

                                                 Back to Modules page