

Hierarchical distributed scenario-based model predictive control of interconnected microgrids

Alissa Schenk and Christian A. Hans | TU Berlin and University of Kassel

Electric power networks are changing

https://pixabay.com/en/power-station-energy-electricity-374097/

https://pixabay.com/en/solarpark-wind-park-renewable-energy-1288842/

Today

Future

Energy systems are changing

- Increasing amount of renewable generators
- Transition
 - from a small number of large-scale units
 - to a large number of small-scale units
- Uncertainty in generation will increase with installed renewable units
- $\Rightarrow \ \text{Need to cope with fluctuations and changing} \\ structure$

Sources: [Kohleausstiegsgesetz, 2020, Erneuerbare-Energien-Gesetz, 2021]

Future power networks

Existing certainty equivalence hierarchical distributed MPC [Hans et al., 2019]

Novel scenario-based hierarchical distributed MPC [Schenck and Hans, 2024]

Contents

Control-oriented model

Control approach

Case study

Conclusions

ASN UNIKASSEL

Modelling of uncertainties

- Probabilities of tree (by design)
 - Probabilities of stage $j \in \mathbb{N}_{[0,J]}$

 $\sum_{m \in \operatorname{nodes}_i(j)} \pi^{(m)} = 1 \tag{1a}$

 Probabilities of child nodes of ancestor *m* ∈ M_i \ nodes_i(*J*)

$$\sum_{\in \mathsf{child}_i(m)} \pi^{(m_+)} = \pi^{(m)}$$
 (1b)

- Nonanticipativity constraint

 m_{+}

$$\mathbf{v}_i^{(m)} = \mathbf{v}_i^{(n)} \quad \forall n \in \text{child}_i(\text{anc}_i(m)).$$
(2)

Power- and setpoint-related constraints

Decision variables of MG $i \in \mathbb{I}$ Control input $v_i = [\underbrace{u_{t,i}^T, u_{s,i}^T, u_{r,i}^T, \delta_{t,i}^T}_{\text{Power setpoints}}]^T$ Power $p_i = [p_{t,i}^T, p_{s,i}^T, p_{r,i}^T, p_{g,i}]^T$ Stored energy x_i Uncertain input $w_i = [w_{d,i}^T, w_{r,i}^T]^T$

- Renewable energy sources

 $p_{r,i}^{\min} \le u_{r,i}^{(m)} \le p_{r,i}^{\max},$ (3a)

$$\boldsymbol{\rho}_{r,i}^{\min} \leq \boldsymbol{\rho}_{r,i}^{(m)} \leq \boldsymbol{\rho}_{r,i}^{\max},$$
 (3b)

- Storage units

$$p_{s,i}^{\min} \le u_{s,i}^{(m)} \le p_{s,i}^{\max},$$
 (4a)

$$\boldsymbol{p}_{s,i}^{\min} \leq \boldsymbol{p}_{s,i}^{(m)} \leq \boldsymbol{p}_{s,i}^{\max}, \tag{4b}$$

- Conventional rotating units
 - $\operatorname{diag}\left(\boldsymbol{p}_{t,i}^{\min}\right)\delta_{t,i}^{(m)} \leq u_{t,i}^{(m)} \leq \operatorname{diag}\left(\boldsymbol{p}_{t,i}^{\max}\right)\delta_{t,i}^{(m)}, \tag{5a}$

$$\operatorname{diag}\left(\boldsymbol{\rho}_{t,i}^{\min}\right)\delta_{t,i}^{(m)} \leq \boldsymbol{\rho}_{t,i}^{(m)} \leq \operatorname{diag}\left(\boldsymbol{\rho}_{t,i}^{\max}\right)\delta_{t,i}^{(m)}. \tag{5b}$$

- Point of common coupling (PCC)

$$p_{g,i}^{\min} \leq p_{g,i}(j) \leq p_g^{\max}.$$
 (6)

ASN UNIKA

Modelling of dynamical system behaviour

Decision variables of MG $i \in \mathbb{I}$ Control input $v_i = [u_{t,i}^T, u_{s,i}^T, u_{r,i}^T, \overbrace{\delta_{t,i}^T}^T]^T$ Power $p_i = [p_{t,i}^T, p_{s,i}^T, p_{r,i}^T, p_{g,i}]^T$ Stored energy x_i Uncertain input $w_i = [w_{d,i}^T, w_{r,i}^T]^T$

- Storage dynamics and limits

$$\mathbf{x}_{i}^{(m)} = \mathbf{x}_{i}^{(m_{-})} - T_{s} \mathbf{p}_{s,i}^{(m)},$$
⁽⁷⁾

$$\mathbf{x}_{i}^{\min} - \boldsymbol{\sigma}_{i}^{(m)} \leq \mathbf{x}_{i}^{(m)} \leq \mathbf{x}_{i}^{\max} + \boldsymbol{\sigma}_{i}^{(m)}$$
 (8)

- Steady-state approximations of lower control layers
 - Power limit of renewable energy sources

$$p_{r,i}^{(m)} = \min(u_{r,i}^{(m)}, w_{r,i}^{(m)}).$$
(9)

Power sharing of grid-forming storage & conventional

$$diag(\chi_{i,1}, ..., \chi_{i,T_i})^{-1}(p_{t,i}^{(m)} - u_{t,i}^{(m)}) = \rho_i^{(m)} \delta_{t,i}^{(m)}, \quad (10a)$$

$$diag(\chi_{i,(T_{i}+1)}, \dots, \chi_{i,(T_{i}+S_{i})})^{-1}(\rho_{s,i}^{(m)} - u_{s,i}^{(m)}) = \rho_{i}^{(m)} \mathbf{1}_{S_{i}}, \quad (10b)$$

• Power controller at the PCC

$$p_{g,i}(\underbrace{\text{stage}_{i}(m)}_{=j}) = -(\mathbf{1}_{R_{i}}^{T} p_{r,i}^{(m)} + \mathbf{1}_{T_{i}}^{T} p_{t,i}^{(m)} + \mathbf{1}_{S_{i}}^{T} p_{s,i}^{(m)} + \mathbf{1}_{D_{i}}^{T} w_{d,i}^{(m)}) \quad (11)$$

Modelling of interconnecting power lines

 $p_{g,1}$

- Line power limit

 $p_e^{\min} \le p_e(j) \le p_e^{\max}$. (12c)

 $p_{q,2}$

Operating costs

- Costs of individual MGs

$$\boldsymbol{\ell}_{i} = \sum_{m \in \mathbb{L}_{i}} \pi_{i}^{(m)} \left(\boldsymbol{\ell}_{r,i}^{(m)} + \boldsymbol{\ell}_{s,i}^{(m)} + \boldsymbol{\ell}_{t,i}^{(m)} + \boldsymbol{\ell}_{sw,i}^{(m)} + \boldsymbol{\ell}_{\rho,i}^{(m)} + \boldsymbol{\ell}_{g,i}^{(m)} \right) \boldsymbol{\gamma}^{\text{stage}_{i}(m)}.$$
(13)

- Cost for power transmission

$$\boldsymbol{\ell}_{e} = \sum_{j=1}^{J} \boldsymbol{p}_{e}^{T}(j) \boldsymbol{C}_{e} \boldsymbol{p}_{e}(j) \cdot \boldsymbol{\gamma}^{j}. \tag{14}$$

Contents

Control-oriented model

Control approach

Case study

Conclusions

Problem 1 (Central mixed-integer MPC)

$$\begin{array}{l} \underset{\substack{\mathsf{V}_1,\ldots,\mathsf{V}_l\\\mathsf{X}_1,\ldots,\mathsf{X}_l\\\mathsf{Q}_1,\ldots,\mathsf{Q}_l\\\mathsf{P}_e,\mathsf{P}_g}}{\mathsf{minimize}} \ell_e + \sum_{i\in\mathbb{I}} \ell_i \end{array}$$

subject to eqs. (2) to (12) for all $m \in \mathbb{L}_i$ as well as initial conditions $x_i^{(0)} = x_i(k)$, $\delta_{t,i}^{(0)} = \delta_{t,i}(k)$ for all $i \in \mathbb{I}$.

> Does not scale well Mean solver time for simple example grid already > 2 minutes

Problem 2 (Central relaxed problem MPC)

$$\begin{array}{l} \underset{\substack{\mathsf{V}_1,\ldots,\mathsf{V}_l\\\mathsf{X}_1,\ldots,\mathsf{X}_l\\\mathsf{Q}_1,\ldots,\mathsf{Q}_l\\\mathsf{P}_e,\mathsf{P}_q}}{\text{minimize } \ell_e + \sum_{i \in \mathbb{I}} \ell_i \end{array}$$

subject to eqs. (2) to (12) for all $m \in \mathbb{L}_i$ as well as initial conditions $x_i^{(0)} = x_i(k)$, $\delta_{t,i}^{(0)} = \delta_{t,i}(k)$ with $\delta_{t,i}^{(m)} \in [0, 1]^{T_i}$ and $\delta_{r,i}^{(m)} \in [0, 1]^{R_i}$ for all $m \in \mathbb{L}_i$ and all $i \in \mathbb{I}$.

Algorithm 1 (Hierarchical distributed MPC)

- 1. Initialize: At time k, $\forall i \in \mathbb{I}$, measure $x_i(k)$, $\delta_{t,i}(k)$ and obtain scenario tree.
- 2. ADMM loop: for $l = 0, ..., l_{max} \in \mathbb{N}$:
 - (i) For all MGs $i \in \mathbb{I}$ (in parallel):
 - > Solve Problem 3 in parallel to obtain $\mathbf{P}_{g,i}^{l+1}$.
 - \gg Send $\mathbf{P}_{g,i}^{\prime+1}$ to central entity.
 - (ii) Central entity:
 - » Solve Problem 4 to obtain $\hat{\mathbf{P}}_{g}^{l+1}$.
 - » Update Lagrange multipliers:

$$\mathbf{\Lambda}^{\prime+1} = \mathbf{\Lambda}^{\prime} + \kappa \left(\mathbf{P}_g^{\prime+1} - \hat{\mathbf{P}}_g^{\prime+1} \right).$$

- » Communicate $\hat{\mathbf{P}}_{g,i}^{l+1}$ and $\mathbf{\Lambda}_{i}^{l+1}$ to all MGs $i \in \mathbb{I}$.
- \gg Check termination criterion:

if
$$(|\mathbf{\Lambda}' - \mathbf{\Lambda}^{l+1}| < \epsilon$$
 and $|\mathbf{P}'_{g,i} - \mathbf{P}'^{l+1}_{g,i}| < \epsilon$ and $|\mathbf{P}_{g,i}^{l+1} - \hat{\mathbf{P}}^{l+1}_{g,i}| < \epsilon$) or $l = l_{\max}$,
then set $\mathbf{P}^{\epsilon}_{\sigma,i} = \hat{\mathbf{P}}^{l+1}_{\sigma,i}$ and go to 3.

3. **Mixed-integer update:** For all microgrid (MG) $i \in \mathbb{I}$ (in parallel):

Solve Problem 5.

Problem 3 (Local ADMM problem at MG $i \in \mathbb{L}$)

$$\mathbf{P}_{g,i}^{l+1} \in \mathop{\arg\min}_{\mathbf{V}_i, \mathbf{X}_i, \mathbf{Q}_i, \mathbf{P}_{g,i}} \boldsymbol{\ell}_i + \mathbf{\Lambda}_i^l \mathbf{P}_{g,i}^T + \kappa/2 \|\mathbf{P}_{g,i} - \hat{\mathbf{P}}_{g,i}^l\|_2^2$$

subject to

eqs. (2) to (11) for all $m \in \mathbb{L}_i$ as well as initial conditions $x_i^{(0)} = x_i(k)$, $\delta_{t,i}^{(0)} = \delta_{t,i}(k)$ with $\delta_{t,i}^{(m)} \in [0, 1]^{T_i}$, $\delta_{r,i}^{(m)} \in [0, 1]^{R_i}$ for all $m \in \mathbb{L}_i$.

Algorithm 1 (Hierarchical distributed MPC)

- 1. Initialize: At time k, $\forall i \in \mathbb{I}$, measure $x_i(k)$, $\delta_{t,i}(k)$ and obtain scenario tree.
- 2. ADMM loop: for $I = 0, ..., I_{max} \in \mathbb{N}$:
 - (i) For all MGs $i \in \mathbb{I}$ (in parallel):
 - > Solve Problem 3 in parallel to obtain $\mathbf{P}_{g,i}^{l+1}$.
 - \gg Send $\mathbf{P}_{g,i}^{l+1}$ to central entity.
 - (ii) Central entity:
 - » Solve Problem 4 to obtain $\hat{\mathbf{P}}_{g}^{l+1}$.
 - » Update Lagrange multipliers:

$$\mathbf{\Lambda}^{\prime+1} = \mathbf{\Lambda}^{\prime} + \kappa \left(\mathbf{P}_{g}^{\prime+1} - \hat{\mathbf{P}}_{g}^{\prime+1} \right).$$

- » Communicate $\hat{\mathbf{P}}_{g,i}^{l+1}$ and $\mathbf{\Lambda}_i^{l+1}$ to all MGs $i \in \mathbb{I}$.
- \gg Check termination criterion:
 - $$\begin{split} & \text{if } \left(|\mathbf{\Lambda}^{\prime} \mathbf{\Lambda}^{l+1}| < \epsilon \text{ and } |\mathbf{P}_{g,i}^{\prime} \mathbf{P}_{g,i}^{l+1}| < \epsilon \text{ and } \\ & |\mathbf{P}_{g,i}^{l+1} \mathbf{\hat{P}}_{g,i}^{l+1}| < \epsilon \right) \text{ or } l = l_{\max}, \\ & \text{then set } \mathbf{P}_{a,i}^{\star} = \mathbf{\hat{P}}_{a,i}^{l+1} \text{ and go to } 3. \end{split}$$
- 3. Mixed-integer update: For all MG $i \in \mathbb{I}$ (in parallel):
 - Solve Problem 5.

Problem 4 (Central ADMM problem at coordinator)

$$\hat{\mathbf{P}}_{g}^{l+1} \in \operatorname*{arg\,min}_{\hat{\mathbf{P}}_{g},\mathbf{P}_{g}} \ \boldsymbol{\ell}_{e} - \sum_{i \in \mathbb{I}} \left(\mathbf{\Lambda}_{i}^{l} \hat{\mathbf{P}}_{g,i}^{\mathsf{T}} + \kappa/2 \|\mathbf{P}_{g,i}^{l+1} - \hat{\mathbf{P}}_{g,i}\|_{2}^{2} \right)$$

subject to eqs. (6) and (12) using $\hat{p}_g(j)$ instead of $p_g(j)$ for all $j \in \mathbb{N}_{[1,J]}$.

Algorithm 1 (Hierarchical distributed MPC)

- 1. Initialize: At time k, $\forall i \in \mathbb{I}$, measure $x_i(k)$, $\delta_{t,i}(k)$ and obtain scenario tree.
- 2. ADMM loop: for $l = 0, ..., l_{max} \in \mathbb{N}$:
 - (i) For all MGs $i \in \mathbb{I}$ (in parallel):
 - > Solve Problem 3 in parallel to obtain $\mathbf{P}_{g,i}^{l+1}$.
 - » Send $\mathbf{P}_{g,i}^{l+1}$ to central entity.
 - (ii) Central entity:
 - » Solve Problem 4 to obtain $\hat{\mathbf{P}}_{g}^{l+1}$.
 - » Update Lagrange multipliers:

$$\mathbf{\Lambda}^{\prime+1} = \mathbf{\Lambda}^{\prime} + \kappa \left(\mathbf{P}_{g}^{\prime+1} - \hat{\mathbf{P}}_{g}^{\prime+1} \right).$$

- » Communicate $\hat{\mathbf{P}}_{g,i}^{l+1}$ and $\mathbf{\Lambda}_{i}^{l+1}$ to all MGs $i \in \mathbb{I}$.
- \gg Check termination criterion:
 - if $(|\mathbf{A}^{l} \mathbf{A}^{l+1}| < \epsilon \text{ and } |\mathbf{P}_{g,i}^{l} \mathbf{P}_{g,i}^{l+1}| < \epsilon \text{ and } |\mathbf{P}_{g,i}^{l+1} \mathbf{\hat{P}}_{g,i}^{l+1}| < \epsilon)$ or $l = l_{\max}$, then set $\mathbf{P}_{a,i}^{\star} = \mathbf{\hat{P}}_{a,i}^{l+1}$ and go to 3.
- **3.** Mixed-integer update: For all MG $i \in \mathbb{I}$ (in parallel):
 - Solve Problem 5.

Problem 5 (Mixed-integer update at MG $i \in \mathbb{L}$)

$$\underset{\mathbf{V}_{i},\mathbf{X}_{i},\mathbf{Q}_{i}}{\text{minimize } \boldsymbol{\ell}_{i}}$$

subject to eqs. (2) to (5) and (7) to (11) for all $m \in \mathbb{L}_i$, as well as initial conditions $x_i^{(0)} = x_i(k)$, $\delta_{t,i}^{(0)} = \delta_{t,i}(k)$ with fixed $\mathbf{P}_{g,i} = \mathbf{P}_{g,i}^*$.

Contents

Control-oriented model

Control approach

Case study

Conclusions

ASN UNIKASSEL

Closed-loop simulation results of novel approach

Stored energy out of desired area

Numerical comparison

		Certainty equival.	Stochastic (Alg. 1)	Prescient
Renewable energy in puh		318.1	333.8	334.0
Conventional energy in puh		61.0	45.2	45.9
No. of switching actions		46	40	29
Costs	MG 1	1 652.8	1 005.9	786.8
	MG 2	1 366.1	774.2	607.7
	MG 3	2000.2	1086.1	1 003.8
	MG 4	1 755.3	1154.3	1 109.9
	Transmission	21.7	19.0	18.7
	Sum	6 796.1	4 039.5	3 527.0

Numerical properties

Contents

Control-oriented model

Control approach

Case study

Conclusions

Conclusions

- Scenario-based stochastic MPC scheme for the operation of interconnected MGs
- Distributed algorithm that reflects the hierarchical power system structure
 - · local controllers are in charge of individual MGs
 - · central entity is in charge of the transmission grid
- Better than certainty equivalence MPC concerning number of constraint violations and costs
- Sufficiently fast convergence

Next steps:

- Scalability
- Suboptimality
- Persistent feasibility

References I

Bernardini, D. and Bemporad, A. (2009).

Scenario-based model predictive control of stochastic constrained linear systems.

In 48th IEEE Conference on Decision and Control & 28th Chinese Control Conference, pages 6333-6338.

Deutscher Bundestag (2020).

Gesetz zur reduzierung und zur beendigung der kohleverstromung und zur änderung weiterer gesetze (kohleausstiegsgesetz).

Deutscher Bundestag (2021).

Gesetz für den ausbau erneuerbarer energien (Erneuerbare-Energien-Gesetz, EEG 2021).

Hans, C. A. (2021).

Operation control of islanded microgrids.

Shaker Verlag.

Hans, C. A., Braun, P., Raisch, J., Grüne, L., and Reincke-Collon, C. (2019).

Hierarchical distributed model predictive control of interconnected microgrids.

IEEE Transactions on Sustainable Energy, 10(1):407-416.

References II

F

Purchala, K., Meeus, L., Van Dommelen, D., and Belmans, R. (2005). Usefulness of DC power flow for active power flow analysis.

In IEEE Power and Energy Society General Meeting, pages 454-459.

Schenck, T. A. and Hans, C. A. (2024).

Hierarchical distributed scenario-based model predictive control of interconnected microgrids.

In European Control Conference.

