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Abstract V

Abstract
The working cycle of the single-atom heat engine [Roß16b] proves the func-
tionality of a Stirling engine on a single-atom level. To investigate quantum
thermodynamics at this level, Carnot or Otto engine are of interest. These en-
gines are composed of adiabatic expansion/compression. An adiabatic change
of a physical system usually has a long evolution time. By exploiting invariants
a significant speedup can be obtained, without losing efficiency due to friction.
Here the general method for obtaining such shortcuts is discussed on the ba-
sis of a single ion trapped in a tapered Paul trap. By allowing non-confining
potentials for short times, an even higher speedup is obtained.

Zusammenfassung

Der Arbeitszyklus der Ein-Atom-Wärmekraftmaschine [Roß16b] beweist die
Funktionalität einer Wärmekraftmaschine mit nur einem Atom. Dennoch wird
diese nur als Stirling-Maschine betrieben. Um die Quantenthermodynamik
auf dieser Ebene zu untersuchen, müssen Carnot- oder Ottowärmekraftmaschi-
nen implementiert werden. Diese Maschinen benutzen adiabatischer Expansion
und Kompression. Eine adiabatische Veränderung eines physikalischen Systems
dauert normalerweise eine verhältnismäßig lange Zeit. Durch die Ausnutzung
von Invarianten kann eine signifikante Beschleunigung dieser Prozesse erzielt
werden, ohne die Effizienz aufgrund von Verlusten zu veringern. In dieser Ar-
beit wird das allgemeine Verfahren zum Bestimmen solcher Protokolle auf der
Basis eines einzelnen Ions diskutiert, das in einer konischen Paul-Falle gefangen
ist. Indem für kurze Zeit nicht fangende Potenziale zugelassen werden, wird
eine noch höhere Beschleunigung erhalten.
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1. Introduction

1.1. Motivation
The investigation of quantum thermodynamics on the single-particle level requires
sophisticated systems. Usually, thermodynamics are best investigated in heat en-
gines. To go to the quantum limit, one needs to perform experiments on single
particles. A promising platform is trapped ions because it is well established and
therefore has many tools available. A recent breakthrough demonstrated that a
heat engine can be implemented in a single ion [Roß16b]. The single-atom heat
engine, which is described in Section 1.3.4, was operated in the classical regime as a
Stirling engine. Hence the Carnot engine has a fundamental relation to the second
law of thermodynamics, it is especially interesting to be implemented in an exper-
iment. Such an engine is composed of adiabatic processes, which usually require a
long evolution time. This yields a longer interaction time which gives rise to more
perturbations from the environment.

To minimize such perturbations and therefore minimize friction, it is desirable to
perform these processes as fast as possible. A significant speedup can be obtained
by exploiting shortcuts to adiabaticity (STA) [Che10; Tor12; Tor13a; Pal16; Tor18].
Such protocols can be exploited not only to guarantee a fast friction-less transition,
but also yield a much shorter cycle time. This will boost the power of the single-
atom heat engine. Furthermore, if the cycle is reversed a speedup for a single ion
heat pump can be obtained.

This thesis is structured in the following way. In this chapter, the underlying con-
cepts of Paul traps, as well as trapped ions themselves, will be explained in Sec-
tion 1.2. Furthermore, in Section 1.3 the working principle of heat engines will
be illustrated. In 2 general concepts of quantum dynamics are summarized. The
method to construct a shortcut to adiabaticity is demonstrated in Chapter 3. In
order to obtain a good understanding of the dynamic of the system during the
shortcut protocol and optimize it, numerical investigations are needed. These are
described in Chapter 4. In Chapter 5 the results of the investigation are presented.
An outlook is given Chapter 6.

1.2. Trapped ions
Trapped ions are a suitable platform for many applications. Ground state prepara-
tion can be performed [Lei03] and can be coupled to engineered reservoirs [Tur00].
Also, they are well suited for quantum information processing. High fidelity one- and
two-qubit gates have been realized [Møl99; Sch03; Lem13]. Recently it was shown,
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that a chain of four ions can be prepared in a maximally entangled state [Kau17].
Furthermore, a clock with a systematic uncertainty below 10−18 was implemented
with trapped 27Al+ [Bre19].

1.2.1. Paul traps
A Paul trap can confine a single particle in three dimensions by only using electric
potentials. It is also possible to confine particles inside a Penning trap, by applying
magnetic static potentials [Bro86]. Hence Earnshaw’s theorem prohibits confinement
of an electric charge in all three dimensions by applying a static electric potential,
one needs to exploit fast oscillating radio frequency (rf) potentials. One can make
a generalized ansatz [Sin10].

Φ(x, y, z, t) =
Udc

2

(
αdcx

2 + βdcy
2 + γdcz

2
)

+
Urf

2
cos(ωrft)

(
αrfx

2 + βrfy
2 + γrfz

2
) (1.1)

Udc describes a constant direct current trapping voltage and Urf is the rf trapping
voltage, which oscillates with a frequency ωrf. The potential needs to fulfill the
Laplace equation in a charge-free space.

△Φ(x, y, z, t) = 0 =Udc (αdc + βdc + γdc) + Urf cos(ωrft) (αrf + βrf + γrf) (1.2)

One can separate the coefficient in a time-dependent and in a time-independent
part.

0 =αdc + βdc + γdc

0 =αrf + βrf + γrf
(1.3)

z

xy

Figure 1.1.: Schematic of a linear Paul trap.

Many configurations are possible. As an example, a linear Paul trap will be
discussed, which is depicted in Figure 1.1. We choose γrf = 0. Therefore, the
remaining parameters need to fulfill the constraints imposed by the Laplace equation
(1.3). The remaining parameters satisfy

−αdc = βdc + γdc

αrf =− βrf
(1.4)
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This yields dynamical confinement in the x-y plane and static confinement along
the z-axis. A classical equation of motion for a particle with mass m and charge q
can be derived.

m
∂2r⃗

∂t2
= q∇Φ(r⃗, t) , (1.5)

with r⃗ = (x, y, z)T . This yields a set of uncoupled Mathieu differential equations.
The solutions can be found in the literature [Lei03; Sin10].

d2ri
dξ2 + [ai − 2qi cos(2ξ)] ri(ξ) = 0 , (1.6)

with i = x, y and 2ξ = ωrft. The parameter ai and qi are determined by the geometry
of the trap. In the case of this example, they can be derived to be

qx =
2|q|Urfαrf

mω2
rf

, ai = −4|q|Udcαdc

mω2
rf

qy = −2|q|Urfβrf

mω2
rf

, ai =
4|q|Udcβdc

mω2
rf

.

(1.7)

Stable solutions can be found for 0 ≤ βi ≤ 1, with βi =
√
ai +

q2i
2

. When |ai|, q2i ≪ 1

a solution of Equation (1.6) can be found.

ri(t) = ri(0) cos(ωit)
(
1 +

qi
2

cos(ωrft)
)

(1.8)

The ion trajectory is composed of a secular harmonic oscillation at the frequency
ωi = βi

ωrf
2

and micromotion which are fast but small oscillations at the frequency of
the radio drive. The confinement along the z axis is a harmonic potential with the
frequency

ωz =

√
|q|Udcγdc

m
. (1.9)

The motion in radial in radial direction can be assumed to be harmonic, hence the
micromotion are comparably small. Furthermore, the micromotion is comparatively
fast and vanishes when taking the time average over one period of ωx,y. This yields
a pseudo potential in the radial direction.

Φp(x, y) =
|q||∇Φ(x, y, z, 0)|2

4mω2
rf

(1.10)

It has been experimentally demonstrated, that the micromotions can be minimized
to a great extent by using additional electrodes [Ber98]. It can therefore be well
approximated by a harmonic potential.
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Funnel-shaped Paul trap

z

xy

Figure 1.2.: Schematic of a linear Paul trap.

The funnel-shaped Paul trap is very similar to a linear Paul trap, which is described
above. The electrodes are placed in an angle ϑ with respect to the z axis of the
trap. This yields a tapered RF potential.

Φ(x, y, z, t) ∝ Urf cos(ωrft)

(r0 + z tan(ϑ))2
(
x2 − y2

)
+
Udc

z20
z2 (1.11)

Here r0 describes the distances of the RF electrodes and z0 the distance of the
DC electrodes. A pseudo potential can be derived for this set up as well using
Equation (1.10).

Φp =
m

2

ω2
x,0x

2 + ω2
y,0y

2

(r0 + z tan(ϑ))4
+
m

2
ω2
zz

2 (1.12)

Here ωi,0 denotes the trapping frequency in radial direction at z = 0. One thing
of note, that the radial trapping frequency is dependent on the axial position. The
tapering of the trap leads to an effective coupling of the radial and the axial degrees
of freedom [Roß16a].

1.2.2. Calcium ion
For the reduction of complexity in experiments, earth-alkali ions are used, because
of their hydrogen-like structure. Furthermore ions without nuclei spin are favorable
hence the hyper-fine structure is non-existing. The electron configuration of a 40Ca+

is [Ar]4s2S1/2. In Figure 1.3 the energy levels are depicted

42S1/2

42P1/2

42P3/2

32D3/2

32D5/2
393 nm

397 nm

729 nm
732 nm

866 nm

854 nm
850 nm

Figure 1.3.: Energy level scheme of 40Ca+.
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Not all of the transitions in Figure 1.3 are relevant. In fact it is sufficient to use
four of the depicted transitions to obtain full control of the system.
The transition 4s2S1/2 ↔ 4p2P1/2 has a short lifetime of τP = 6.9 ns [Het15]. This
short lifetime can be utilized for laser cooling [Lei03]. The ion decays from the
4p2P1/2 to the 3d2D3/2 state with a probability of 6.4% [Ram13]. Hence further
relaxation to the ground state is dipole forbidden, this state has long life time of
τD = 1.18 s [Kre05]. In order to counteract this decoherence, a light field near 866
nm is used to re-pump the decayed population to the 4p2P1/2 state.

1.3. Heat engines

Heat engines are one of the crucial driving forces behind social development. The
development of steam power engines was crucial for further technical developments,
which sparked the industrial revolution. Before this, heat engines were only of
interest to researchers. But due to the more efficient design, the steam power engines
could generate enough work to provide factories with it. The quest for higher and
higher powers was sparked. Further breakthroughs were the development of the
combustion engine by Nicolaus August Otto in 1876 [Sas62] and the self-combustion
engine by Rudolf Diesel in 1893 [Die93]. This enabled the development of cars and
trucks, which made transport of people and goods much easier.
A heat engine consists in general of a working agent, which is connected to a flywheel,
and a cold and hot reservoir. The reservoirs provide the heat engine with energy,
which drives the working agent. The flywheel allows one to extract work from the
heat engine.
To validate theoretical research in the field of quantum thermodynamics, which
has been going on for quite some time, smaller and smaller engines are needed.
Therefore, miniaturization is needed to be able to operate a heat engine in the
quantum realm. A recent breakthrough made a proof of principle of a single-atom
heat engine [Roß16b; Roß16a]. This heat engine still works in the regime of classical
thermodynamics, but has all the necessary tools to reach the quantum limit.
The Carnot and Otto cycle will be discussed in Section 1.3.1 in a classical sense.
Furthermore, the working principle of the single-atom heat engine will be described
in Section 1.3.4.

1.3.1. The Carnot cycle

The Carnot cycle is a heat engine cycle, which was formulated by Sadi Carnot [Car72]
and is still the subject of much recent research [Cur75; Gev92a; Ben00; Esp10a;
Esp10b; Ma17; Ma18; Dan19a]. However, it needs to be perfectly reversible,which
is not feasible for experimental implementation. Because even the slightest friction
leads to irreversible entropy production. Furthermore, finite-time effects also need to
be considered, hence perfect thermalization is only reached at infinite time [Gev92a;
Gev92b].
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S

T W

B

CD

A

TC

TH

S1 S2

(a) S-T -Diagram.

V

p

TC

TH

C

B

D

A

(b) p-V diagram

Figure 1.4.: Depiction of the Carnot cycle in a (a) T -S diagram and in a (b) p-V
diagram.

The Carnot cycle, which is depicted in Figure 1.4, is composed of four processes.
These are described below.

A → B isothermal expansion The working agent is in contact with the
hot reservoir at temperature TH and work is
transferred reversibly from the hot reservoir
to it.

B → C adiabatic expansion The working agent is decoupled from bath
and adiabatically expanded until it reaches
the temperature of the cold reservoir TC .

C → D isothermal compression The working agent is in contact with the cold
bath at temperature TC , to which work is
transferred from the working agent.

D → A adiabatic compression The working agent is decoupled from the cold
reservoir and adiabatically compressed until
it reaches the temperature of the hot reser-
voir TH .

To quantify the quality of a heat engine the efficiency η is used. It is defined as the
ratio of the work W performed by the working agent and the heat flowing in the
system QAB. The heat flowing into the system can be computed by

QAB = TH ·∆S , (1.13)

with ∆S = (S2 − S1), hence the system is decoupled from the environment during
the adiabatic expansion. The work transferred from the hot to the cold reservoir
can be expressed as

W = (TH − TC) ·∆S . (1.14)
From this expressions, the efficiency of the Carnot cycle can be ηC can be computed.

ηC =
(TH − TC)

TC
= 1− TH

TC
(1.15)
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It can be concluded from the second law of thermodynamics, that the Carnot effi-
ciency yields a tight classical bound for any heat engine. That is due to the use of
solely reversible adiabatic and isothermal processes.

η ≤ 1− TH
TC

(1.16)

Perfect reversible thermalization can only be reached after infinite time. Therefore,
the output power, which is defined by the work per cycle W divided by the time per
cycle τcyc, from a perfect reversible heat engine approximates zero, hence τcyc → ∞
[Cal85]. In order to best utilize the output of the heat engine, one wants to operate
it at maximal efficiency at maximum power. Because such an engine runs at finite
times, the isothermal processes will not be reversible. Such an engine is called a
endoreversible engine. The Curzon-Ahlborn limit yields a classical tight bound for
such the efficiency at maximal power [Cur75; Nov58].

ηCA = 1−
√
TH
TC

(1.17)

It is important to note, that the Carnot efficiency, as well as the Curzon-Ahlborn
limit, is solely dependent on the temperatures of the cold and hot reservoirs.

1.3.2. The Otto cycle
The Otto cycle is one of the most used in modern technology. It approximates
the cycle of a gasoline combustion engine, which is installed in cars. As well as the
Carnot cycle, the Otto cycle is investigated in recent research [Den13; Roß14; Kos17;
Aba19; Çak19]. A schematic depiction of the Otto cycle is found in Figure 1.5.

S

T W

B

C

D

A

S1 S2

(a) T -S diagram.

V

p

B

C

D

A

V1 V2

(b) p-V diagram

Figure 1.5.: Depiction of the Otto cycle in a (a) T -S diagram and in a (b) p-V
diagram.

The Otto cycle is composed of four strokes which are described below.
The heat transfer between the working agent and the reservoirs does not occur at
a constant temperature. Therefore, one needs to account for this change at every
infinitesimal step by integrating over the changing temperature. The efficiency of
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A → B isochoric heating Heat is transferred from the hot reservoir to
the working agent while the volume is kept
constant.

B → C adiabatic expansion The working agent is adiabatic expanded till
V2 is reached.

C → D isochoric cooling Heat is transferred from the working agent
to the cold reservoir while the volume is kept
constant.

D → A adiabatic compression The working agent is adiabatic compressed
till V1 is reached.

an Otto cycle is solely dependent on the property of the working agent. For an ideal
gas, the Otto efficiency can be derived to be

ϵOtto = 1−
(
V2
V1

) (cp−cν )

cν

, (1.18)

where cp denotes the isobaric and cν the isochoric heat capacity [Cal85].

Quantum harmonic Otto cycle

The quantum harmonic Otto cycle is the quantum version of the previously described
Otto cycle. A straight forward approach is seeking analogues for each process.
Hence the system is viewed as a harmonic oscillator, and exterior parameters as e.g.
volume are not clearly defined [Kos17]. Instead frequency and occupation number
are used to describe the cycle. The ”cold” frequency ωc corresponds to V1 and the
”hot” frequency ωh to V2. The heat transfer is expressed as the difference of the
occupation number ∆n = nh − nc, with ni = 1/(exp[h̄ωi/kbTi] − 1). The work per
cycle is obtained.

Wcyc = h̄∆ω∆n , (1.19)

with ∆ω = ωh − ωc [Kos17]. The efficiency of the quantum harmonic oscillator
becomes

ηOtto = 1− ωc
ωh

≤ ηCA . (1.20)

1.3.3. The Stirling cycle
The Stirling cycle is not that prominent in modern technology and is usually known
from entry-level experimental physics lecture. But still has many interesting ap-
plications. For example, a Stirling engine, which is heated by solar power, can be
utilized to propel a generator [Kon03]. Furthermore, since a Stirling engine doesn’t
use combustion, it makes lower noise and can be used environments with fire hazards
or where oxygen is a crucial resource. Such an environment is found in submarines.
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Therefore a Stirling engine is well suited to propel a submarine [Nil88]. The Stirling
cycle is still subject to recent research [Wu98; Yin17; Yin18].

S

T W

B

CD

A

TC

TH

(a) T -S diagram.

V

p

TC

TH

C

B

D

A

(b) p-V diagram.

Figure 1.6.: Depiction of the Stirling cycle in a (a) T -S diagram and in a (b) p-V
diagram.

The Stirling cycle, which is depicted in Figure 1.6, is composed of four processes,
which are described below.

A → B isothermal expansion The working agent is in contact with the
hot reservoir at temperature TH and work is
transferred reversibly from the hot reservoir
to it.

B → C isochoric expansion The working agent is decoupled from bath
and adiabatically expanded until it reaches
the temperature of the cold reservoir TC .

C → D isothermal compression The working agent is in contact with the cold
bath at temperature TC , to which work is
transferred from the working agent.

D → A isochoric compression The working agent is decoupled from the cold
reservoir and adiabatically compressed until
it reaches the temperature of the hot reser-
voir TH .

Hence the Stirling cycle includes isothermal expansion and compression like a Carnot
cycle, the same notion as discussed in Section 1.3.1 applies here.

1.3.4. Single-atom heat engine
To test thermodynamics in the quantum regime, heat engines need to be realized in
quantum systems. In 2016 a major breakthrough was achieved. A heat engine was
implemented with a single 40Ca+ ion as the working agent. The ion was trapped
in a funnel-shaped ion trap, which is described in Section 1.2.1, to couple the axial
degree of freedom to the radial. [Roß16a]
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Figure 1.7.: Working cycle of the single-atom heat engine [Roß16b].

The working cycle of the single-atom heat engine is depicted in Figure 1.7. Be-
cause the motional state of the ion can be described as a harmonic oscillator, a
representation in frequency and mean phonon number was chosen by the authors.
A sterling cycle is realized by switching between hot and cold reservoir. The hot
reservoir is implemented as noise on the trapping electrodes, which heat the radial
degrees of freedom of the ion. The Doppler cooling laser is interacting constantly
interacting with the ion. Thus the cold bath is implemented by switching off the
noise on the trapping electrodes.
The ion, which has a temperature of nH , moves away from the apex, hence the de-
placement force is increased due to a broader wave packet in radial direction. This
yields a lowering of the the radial frequency, until ωc is reached. The ion is then
Doppler cooled, till it reaches nC . The force on the ion reduces. Due to the lowered
force, the ion moves towards the apex of the taper until the frequency ωc is reached.
By applying noise to the electrodes the ion is heated till it reaches nH and the cycle
starts over again.
The single-atom heat engine performed at an efficiency of ηSIHE = 2.8‰ with a
power of P = 3.42 · 10−22 J [Roß16b].
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2. Quantum dynamics

2.1. Heisenberg equation of motion
To understand and describe the time-dependency of quantum-mechanical system, a
description is needed. The temporal evolution of a state |ψ⟩ ∈ H can be described
by the time-dependent Schrödinger equation [Sak17, p. 66-73].

ih̄
d |ψ(t)⟩

dt = Ĥ(t) |ψ(t)⟩ . (2.1)

Assuming, that the Hamiltonian Ĥ is time-independent, Equation (2.1) simplifies
to the time-independent Schrödinger equation.

ih̄
d |ψ(t)⟩

dt = Ĥ |ψ(t)⟩ . (2.2)

This equation can be solved by defining an unitary time-evolution operator Û(t, t0 =
0) = e−

i
h̄
Ĥt. The time-evolution of a state is then given by

|ψ(t)⟩ = Û(t, 0) |ψ(0)⟩ (2.3)

Each measurement result of a quantum system is described as an expectation value
of an hermitian operator. The expectation value of a time-independent hermitian
operator Â(S) ∈ L(H) can be expressed as

⟨ψ(t)|Â(S)|ψ(t)⟩ =
〈
Û(t, 0)ψ(0)

∣∣∣Â(S)
∣∣∣Û(t, 0)ψ(0)〉

=
〈
ψ(0)

∣∣∣Û †(t, 0)Â(S)Û(t, 0)
∣∣∣ψ(0)〉

=
〈
ψ(0)

∣∣∣Â(H)(t)
∣∣∣ψ(0)〉 =

〈
Â(H)(t)

〉
|ψ(0)⟩

.

(2.4)

The superscript S and H denotes, that the operator is written in the Schrödinger
or Heisenberg picture respectively. Hence these expectation values need to be equal
and we can write the operator in the Heisenberg picture as

Â(H)(t) = Û †(t, 0)Â(S)Û(t, 0). (2.5)

Taking the derivative with respect to time yields the following expression:

dÂ(H)(t)

dt =
i

h̄
ĤÛ †(t)Â(S)Û(t) + Û †(t)

∂Â(S)

∂t
Û(t)− i

h̄
Û †(t)Â(S)ĤÛ(t). (2.6)
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Hence [Û(t), Ĥ] = 0 [Sak17, p. 83], Equation (2.6) can be rewritten to obtain the
following expression.

dÂ(H)(t)

dt =
i

h̄
ĤÛ †(t)Â(S)Û(t) + Û †(t)

∂Â(S)

∂t
Û(t)− i

h̄
Û †(t)Â(S)Û(t)Ĥ

=
i

h̄
Û †(t)ĤÂ(S)Û(t) + Û †(t)

∂Â(S)

∂t
Û(t)− i

h̄
Û †(t)Â(S)ĤÛ(t)

=
i

h̄
Û †(t)Ĥ Û(t)Û †(t)︸ ︷︷ ︸

=1̂

Â(S)Û(t) + Û †(t)
∂Â(S)

∂t
Û(t)

− i

h̄
Û †(t)Â(S)Û(t)Û †(t)ĤÛ(t)

=
i

h̄

(
Ĥ(H)(t)Â(H)(t)− Â(H)(t)Ĥ(H)(t)

)
+ Û †(t)

∂Â(S)

∂t
Û(t)

=
i

h̄

[
Ĥ(H)(t), Â(H)(t)

]
+ Û †(t)

∂Â(S)

∂t
Û(t)

(2.7)

Here, Ĥ(H)(t) denotes the representation of the Hamiltonian in the Heisenberg pic-
ture. Furthermore, the second term in the last row vanishes, if the operator Â is
not explicitly time-dependent in the Schrödinger picture.

dÂ(t)
dt =

i

h̄

[
Ĥ(t), Â(t)

]
+
∂Â(t)

∂t
. (2.8)

2.1.1. Ehrenfest theorem
By taking the expectation value of Equation (2.8), an expression for the time de-
pendent expectation value is found. The states are taken in the Heisenberg picture
and are therefore time-independent.〈

ψ(0)

∣∣∣∣∣dÂ(t)dt

∣∣∣∣∣ψ(0)
〉

=

〈
ψ(0)

∣∣∣∣ ih̄[Ĥ(t), Â(t)
]∣∣∣∣ψ(0)〉+

〈
ψ(0)

∣∣∣∣∣∂Â(t)∂t

∣∣∣∣∣ψ(0)
〉

(2.9)

Hence state vectors are independent, the order of derivative and the expectation
value can be exchanged.

d
dt

〈
Â(t)

〉
=
i

h̄

〈[
Ĥ(t), Â(t)

]〉
+
∂

∂t

〈
Â(t)

〉
(2.10)

It is particularly interesting to take a look at the time dependence of the momentum
operator p̂ and position operator x̂. The measurement of x̂ and p̂ can be easily
implemented for most systems . For example the position of a trapped ion can
be measured with a CCD camera [Glo15]. Furthermore, the momentum of the ion
can be obtained by measuring the velocity dependent Doppler shift of a narrow
transition, for example in an calcium ion the 42P1/2 ↔2 P1/2 or the 4p2P1/2 ↔ 3d2D3/2

transition [Roß15].
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For a general Hamiltonian of the form Ĥ =
p̂2

2m
+ V (x̂), the following expression is

obtained for the time derivative of momentum and position operator.

d
dt ⟨x̂⟩ =

1

m
⟨p̂⟩ (2.11)

d
dt ⟨p̂⟩ = −

〈
∂V (x)

∂x

〉
(2.12)

To obtain an uncoupled differential equation, the derivative of Equation (2.11) is
taken and Equation (2.12) is inserted.

d2

dt2 ⟨x̂⟩ = − 1

m

〈
∂V (x)

∂x

〉
(2.13)

This yields the classical equation of motion if ⟨∂V (x)
∂x

⟩ = ∂
∂x

⟨V (x)⟩.

2.2. Density operators and Liouville equation
States in the Hilbert space give only a limited description of the full statistical
behavior of quantum systems since they are only capable of modeling pure states.
To depict mixed states as well, density operators need to be used. Mixed states can
be interpreted as statistical admixture of quantum mechanical states. In a finite-
dimensional Hilbert space the density operator is often referred to as the density
matrix [Rei15]. For an arbitrary basis {|ψℓ⟩} of H the density matrix can be written
as

ρ̂ =
∑
ℓ

pℓ |ψℓ⟩⟨ψℓ| . (2.14)

Here pℓ denotes the probability of finding the system in the pure state |ψℓ⟩. Hence
this is a probability distribution, ∀ℓ : pℓ ≥ 0 and

∑
ℓ pℓ = 1 must hold. Furthermore,

ρ̂ is hermitian and positive-semi definite.
The expectation value of an operator Â ∈ L(H) can be computed from the Hilbert-
Schmidt norm ⟨Â , ρ̂⟩HS.

⟨Â⟩ = ⟨Â , ρ̂⟩HS = tr
[
Âρ̂
]
. (2.15)

The dynamic of a density matrix is described by the Liouville-von Neumann equa-
tion. It can be derived by utilizing the time-dependent Schrödinger equation, after
applying the product rule.

∂ρ̂

∂t
= − i

h̄

[
Ĥ, ρ̂

]
(2.16)

Equation (2.16) describes the evolution of a quantum system without dissipation.
Compared to the Heisenberg equation of motion (Equation (2.8)), the Liouville-von
Neumann equation has a strong resemblance. They only differ in sign. The reason
for this is, that ρ̂ has only a time-evolution according to the Schrödinger equation
of motion and is not a dynamical observable in the Heisenberg picture, hence ρ̂ is
constructed from states in the Schrödinger picture [Sak17, p. 185].
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3. Shortcut to adiabaticity
In this chapter, the formalism for constructing shortcuts to adiabaticity, as described
in [Tor12; Tor13b; Cam14], is explained. In Section 3.1 a definition for adiabaticity
is given. In Section 3.2 Lewis-Reisenfeld invariants are discussed and in Section 3.3,
an invariant is found using the reverse engineering approach.
A major part of this chapter has been published in:
Transient Non-Confining Potentials for Speeding Up a Single Ion Heat Pump,
E. Torrontegui, S. T. Dawkins, M. Göb, K. Singer, New Journal of Physics 20,
105001 (2018).

3.1. Adiabaticity
Adiabatic systems are closed systems, with no heat exchange with the environment.
In thermodynamics, adiabatic processes are defined as processes, where there is no
heat exchange [Bae09].

Q̇ = 0 (3.1)
In quantum mechanics the adiabatic approximation is a common method to separate
the dynamics of different processes, which evolves on different time scales. A ”slow”
change is on the scale of T ≫ 2πh̄/∆E, where ∆E is the difference in energy
eigenvalues [Sak17, p. 346].
In the quantum harmonic Otto cycle [Kos17], the adiabatic assumption leads to a
limitation of the cycle time τcyc ≫ 4π/∆ω. The non-adiabatic parameter µ needs
to fulfill

µ =
˙ω(t)

ω(t)2
= const. ≪ 1 (3.2)

to be in the adiabatic limit. In this limit, no friction is generated and is therefore
completely reversible.
As discussed in Section 1.3.1 this limits the output power P . To obtain higher
power at the same amount of work W one needs to minimize the cycle time [Den13;
Bea16; Aba19]. On a shorter timescale the adiabatic condition is not satisfied and
the dynamics are not separable anymore. To have an adiabatic process beyond the
adiabatic limit a sophisticated protocol ω(t) needs to be found. Such a protocol is
called a shortcut to adiabticity (STA) [Che10; Tor12; Tor13b; Pal16; Tor18].

https://doi.org/10.1088/1367-2630/aae3ee
https://doi.org/10.1088/1367-2630/aae3ee
https://doi.org/10.1088/1367-2630/aae3ee
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3.2. Lewis-Riesenfeld invariants
The Lewis-Riesenfeld theory is used to obtain a dynamical invariant Î(t) of a quan-
tum system, which evolves with a time-dependent Hamiltonian Ĥ(t). Such a invari-
ant needs to be a unitary operator, which fulfills

dÎ(t)
dt =

∂Î(t)

∂t
+
i

h̄

[
Ĥ(t), Î(t)

]
= 0 . (3.3)

The dynamical invariant has the form

Î(t) =
∑
i

λi |ϕi⟩⟨ϕi| , (3.4)

where {|ϕi⟩} are the eigenvectors of Î(t) with constant eigenvalues λn [Lew69]. Any
solution of the time-dependent Schrödinger equation (Equation (2.1)) can be ex-
panded in the eigenbases of the invariant.

|Ψ(t)⟩ =
∑
ℓ

cℓ |ψℓ⟩ with |ψℓ⟩ = eiαℓ(t) |ϕℓ⟩ (3.5)

The coefficients cℓ are constant and time independent. αℓ(t) denotes the Lewis-
Riesenfeld phase [Lew69].

αℓ(t) =
1

h̄

∫ t

0

〈
ϕℓ(τ)

∣∣∣∣ih̄ ∂∂τ − Ĥ(τ)

∣∣∣∣ϕℓ(τ)〉 dτ (3.6)

The representation of the density matrix in the eigenbases of the dynamic invariant
⟨ϕj(t)|ρ̂(t)|ϕk(t)⟩ is computed by

ρ̇jk(t) = i

[〈
ϕj(t)

∣∣∣∣ih̄ ∂∂t − Ĥ(t)

∣∣∣∣ϕj(t)〉−
〈
ϕk(t)

∣∣∣∣ih̄ ∂∂t − Ĥ(t)

∣∣∣∣ϕk(t)〉] ρjk(t)
ρ̇jj(t) = 0 .

(3.7)

It becomes apparent, that the diagonal elements remain unchanged [Lew69]. This
yields, that the populations, which are initialized in the eigenbasis of the invari-
ant, stay in the instantaneous eigenstate without any transition. The off-diagonal
elements depend on the time derivative of the Lewis-Riesenfeld phases [Lev18].

3.3. Invariant-based reverse Engineering
As discussed in the previous section, the populations of the instantaneous eigenstates
do not change. To change the system without unwanted excitation, the commutator
of the Hamiltonian and the invariant must vanish at starting time t0 and final time
tf . This yields the so-called friction-less condition[

Ĥ(t0), Î(t0)
]
=
[
Ĥ(tf ), Î(tf )

]
= 0. (3.8)
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This ensures that the system starts and ends in the eigenstates of the Hamilto-
nian. The construction of the invariant Î(t) is demonstrated for an effective one-
dimensional time-dependent harmonic oscillator.

Ĥ =
p̂2

2m
+
m

2
ω2(t)q̂2 . (3.9)

To ensure a friction-less transition between Ĥ(t0) and Ĥ(tf ) a proper invariant needs
to be chosen. Such an invariant reads [Lew69]

Î(t) =
1

2m

[
b(t)p̂−mḃ(t)q̂

]2
+
m

2
ω2
0

q̂2

b2(t)
. (3.10)

Function b(t) needs to fulfill the Ermakov equation [Erm08]:

b̈(t) + ω2(t)b(t) =
ω2
0

b3(t)
, (3.11)

where ω0 denotes the initial frequencies of the harmonic oscillator at t0. The bound-
ary conditions, obtained from Equation (3.8), yields constraints for b(t) at t0 and
tf . For the sake of simplicity, t0 = 0 is chosen, to obtain

b(0) = 1, ḃ(0) = 0, b̈(0) = 0

b(tf ) = γ, ḃ(tf ) = 0, b̈(tf ) = 0 ,
(3.12)

with the expansion/compression ratio γ :=
√
ω0/ωf . The Lewis-Riesenfeld phase is

computed using Equation (3.6).

αn(t) = −ω0

(
n+

1

2

)∫ t

0

dτ 1

b2(τ)
(3.13)

The wave function of an arbitrary state at a time can be obtained using Equa-
tion (3.5). The eigenfunction in spatial representation ψn(q, t) is computed from
⟨q̂|ψn(t)⟩.

ψn(q, t) =
(mω0

πh̄

) 1
4 e

i

(m
2h̄

) ḃ(t)
b(t)

+i
ω0

b2(t)

q2
√

2nn!b(t)
e
−iω0(n+ 1

2)
∫ t
0 dτ 1

b2(τ)Hn

[√
mω0

h̄

q

b(t)

]
,

(3.14)
where Hn denotes the Hermite polynomial of the n-th order. The average energy is
computed from the expectation value of the Hamiltonian [Che10].〈

Ĥ(t)
〉
n
=

(2n+ 1)h̄

4ω0

(
ḃ2(t) + ω2(t)b2(t) +

ω2
0

b2(t)

)
(3.15)

Furthermore, ⟨q̂⟩n = 0 and has a standard deviation of

σq̂ =
〈
q̂2
〉
=

∫ ∞

−∞
dq q2|ψn(q, t)|2 =

h̄b2(t)

mω0

(
n+

1

2

)
. (3.16)
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From Equation (3.16) a physical meaning for b(t) can be deduced. b(t) modulates
the confinement and therefore changes the variance of a wave packet. Every function
fulfilling the boundary conditions (Equation (3.12)) is a suitable drive

ω2(t) =
ω2
0

b4(t)
− b̈(t)

b(t)
(3.17)

for the shortcut protocol, independent of the duration tf . To obtain a solution for
b(t) a polynomial ansatz is made with b(t) =

∑5
i=0 ait

i. To obtain a good solution
there should be at least as many ai as conditions on b(t). The obtained system of
linear equations is solved for the coefficients. The solution reads

b(t) = 6(γ − 1)τ 5 − 15(γ − 1)τ 4 + 10(γ − 1)τ 3 + 1 , (3.18)

with τ = t
tf

[Tor18]. Hence b(t) is not unique during the shortcut a more sophisti-
cated function can be found, which also includes additional experimental constrains
and allow for more optimization [Lev17; Lev18; Ste10; Che11; Tor17].

3.4. Reverse engineering of Gaussian states
3.4.1. Coherent states
The protocol, presented in Equation (3.17), is also suitable to apply not only on
Fock states |n⟩, but also oncoherent states [Pal16]. Hence

[
Ĥ(0), Î(0)

]
= 0, the

eigenbasis of the invariant and the Hamiltonian is common.

|α(t)⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!

|n(t)⟩ (3.19)

After the shortcut is performed, the initial state |α(0)⟩ will evolve to

|ψ(tf )⟩ = e−i
gω0
2 e−

|α̃|2
2

∞∑
n=0

α̃n√
n!

|ϕn(tf )⟩ = |α̃(tf )⟩ . (3.20)

Where g =
∫ tf
0

dτ 1
b2(τ)

and α̃ = αe−igω0 . Due to the friction-less condition at tf , the
basis of Î and Ĥ are the same. Thus a coherent state is obtained with frequency
ωf .

3.4.2. Thermal states
Thermal states are constructed as a function of the inverse temperature β = 1

kBT
,

where kB is the Boltzmann constant. A thermal states can be written as [Nie09,
p. 328]

ρ̂th(t) =
e−βĤ(t)

tr
[
e−βĤ(t)

] , (3.21)
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where the time-dependent Hamiltonian Ĥ(t) can be generally expressed in the Fock
basis

Ĥ(t) = h̄ω(t)

(
n̂(t) +

1

2

)
. (3.22)

The number operator n̂ has the eigenvectors n̂ |n⟩ = n |n⟩. In this basis, the density
operator is diagonal. Therefore, the density matrix of the thermal state becomes
diagonal itself. From Equation (3.7), it follows that the distribution is unchanged
during the protocol. By imposing the frictionless condition Equation (3.8) it can
be concluded, that the basis of the Hamiltonian and the invariant are equal at
initial and final times. Therefore, diagonal states expanded by the eigenbasis of the
Hamiltonian will be diagonal in the eigenbasis of the invariant as well. By changing
the frequency according to Equation (3.17), the system is initially in the state

ρ̂(0) =
e−β0Ĥ(0)

tr
[
e−β0Ĥ(0))

] , (3.23)

and will evolve to the final state

ρ̂(tf ) =
e−βf Ĥ(tf )

tr
[
e−βf Ĥ(tf )

] , (3.24)

where Ĥ(tf ) with ω(tf ) = ωf and a cooler/hotter inverse temperature βf = γ2β0.

3.4.3. Quantum dynamical evolution of Gaussian states
Coherent and thermal states are Gaussian states [Wee12]. Gaussian states are de-
fined as such states, which have a Gaussian symmetric Wigner function W (x).

W (x) = W (q, p) =
1

πh̄

∫ ∞

−∞
dy ⟨q + y|ρ̂|q − y⟩ e−2 i

h̄
py (3.25)

The eigenvalues of the quadrature operator x̂ = (q̂, p̂) are x = (q, p). Therefore,
the first and the second-order moments have a one-to-one correspondence with the
density operator ρ̂ = ρ̂(x̄,V) [Wee12]. x̄ = ⟨x̂⟩ = Tr[x̂ρ̂] is the first moment, which
is often referred to as the displacement vector. V denotes the covariant matrix,
which has the entries Vij = 1

2
⟨{∆x̂i,∆x̂j}⟩ with ∆x̂i = x̂i − ⟨x̂i⟩ and {·, ·} denotes

the anti-commutator.
For Gaussian states of the harmonic oscillator, the statistic moments are constructed
from the set of operators X̂ = {q̂, p̂, q̂2, p̂2, q̂p̂+ p̂q̂}, which forms a closed Lie algebra,
hence the Hamiltonian of a harmonic oscillator (3.9) is a linear combination of
X̂i ∈ X̂.

x̂ = (q̂, p̂) , V =

(
⟨q̂2⟩ − ⟨q̂⟩2 ⟨q̂p̂+ p̂q̂⟩ − ⟨q̂⟩ ⟨p̂⟩

⟨q̂p̂+ p̂q̂⟩ − ⟨q̂⟩ ⟨p̂⟩ ⟨p̂2⟩ − ⟨p̂⟩2
)

(3.26)

The Wigner function is expressed with first and second order statistical moments.

W (x) =
exp
[
(x − x̄)TV−1(x − x̄)

]
2π
√

det{V}
(3.27)
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V−1 denotes the inverse matrix of V and xT the transpose of x. Hence W (x)
corresponds to the density operator and is constructed from operators X̂i ∈ X̂,
the use of wave packet propagation can be avoided. It is sufficient to evolve the
expectation values X̄i(t) = ⟨X̂i(t)⟩ = Tr

[
X̂i(t)ρ̂(0)

]
in time using Equation (2.10),

which simplifies in the Heisenberg picture to

dX̄i

dt =
i

h̄

[
Ĥ, X̄i

]
. (3.28)

The equation of motion is closed to the algebra as well. Therefore, a Gaussian state
ρ̂(t) stays Gaussian during its evolution.
To evaluate the overlap between two states ρ̂1 and ρ̂2, the fidelity F(ρ̂1, ρ̂2) =

Tr
[√√

ρ̂1ρ̂2
√
ρ̂1

]
[Nie09, p. 411] can be computed, using their respective first and

second moments x̄1, V̂2 and x̄2, V̂2.

F(ρ̂1, ρ̂2) = F0(V̂1, V̂2) exp
[
−1

4
δTX̄ (V1 + V2)

−1 δX̄

]
. (3.29)

δx̄ = x̄2 − x̄1 and F0(V̂1, V̂2) is computed by

F0(V̂1, V̂2) =
Ftot

4

√
det
(
V̂1 + V̂2

) , (3.30)

with Ftot = 4

√
det
[
2

(√
1̂+ (V̂auxΩ̂)−2

4
+ 1̂

)
V̂aux

]
. V̂aux is an auxiliary matrix, ob-

tained from

V̂aux = Ω̂T
(
V̂1 + V̂2

)−1
(
Ω̂

4
V̂2Ω̂V̂1

)
, (3.31)

with Ω̂ = ( 0 1
−1 0 )⊗ 1̂ [Ban15].
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4. Numerical methods

4.1. Strömer-Verlet method
Many methods are developed to propagate a classical trajectory [Sin10]. A very
stable numerical method for integrating time dependence is the so called Strömer-
Verlet method [Hai03]. In this method, the dynamical variables are partitioned into
two groups, which are propagated by two different Runge-Kutta methods. In general
the dynamical variables are position r⃗ and velocity v⃗. As an example a classical
non-relativistic particle of mass m and charge q is used. The Hamiltonian of such a
particle in an arbitrary conservative electric potential V (r⃗, t) has the general form:

H(r⃗, v⃗, t) =
m

2
|v⃗|2 + V (r⃗, t). (4.1)

By expressing the canonical equations as finite differences, the equation of motion
can be derived.

r⃗n+1 − 2r⃗n + r⃗n−1 = −dt2 q
m
∇V (r⃗n, tn). (4.2)

Here dt denotes the length of one time step. The issue here is, that x−1 is unknown.
The canonical equations yields:

1

m
∇v⃗H(r⃗, v⃗, t) = v⃗ =

dr⃗
dt . (4.3)

The velocity can be rewritten as symmetric finite difference, by expressing the time
derivative of the position as finite difference

v⃗n =
r⃗n+1 − r⃗n−1

2∆t
, (4.4)

with ∆t denoting the finite time step. For a tolerable error ϵ the step size is best
chosen to be ∆t =

√
ϵ to obtain the best compromise between accumulated floating

point errors and numerical errors. By using the initial position x⃗0 and initial velocity
v⃗0, x⃗−1 can be eliminated. This yields for r⃗1:

x⃗1 = x⃗0 +∆tv⃗0 +
∆t2

2

q

m
∇V (r⃗n, tn) (4.5)

For further propagation, the following recursion relations are used

v⃗n+ 1
2
= v⃗n +

∆t

2

q

m
∇V (r⃗n, tn) (4.6)

r⃗n+1 = r⃗n +∆v⃗n+ 1
2

(4.7)

v⃗n+1 = v⃗n+ 1
2
+

∆t

2

q

m
∇V (r⃗n, tn). (4.8)
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If one is not interested in v⃗n+1, Equation (4.8) can be inserted in Equation (4.6), to
obtain

v⃗n+ 1
2
= v⃗n− 1

2
+

∆t

2

q

m
∇V (r⃗n, tn). (4.9)

Example source code can be found in Appendix A.1.

4.2. Gradient ascent/descent method
The gradient descent method is a powerful tool to maximize/minimize a control
functional with respect to a certain parameter. For example it can be utilized to
maximize/minimize friction in a problem with dissipation.
The dynamic of a density operator p̂(t) is obtained from the Liouville equation (2.16)

˙̂ρ(t) =
i

h̄

[
ρ(t), Ĥ0 +

L∑
ℓ

ξℓ(t)Ĥℓ

]
. (4.10)

Ĥ0 denotes the time-independent Hamiltonian of the system and Ĥℓ describes the
control field, which have the time-dependent amplitudes ξℓ(t). Furthermore, the
control vector is defined as ξ(t) ≡ (ξ1(t), ξ2(t), . . . , ξL(t)) [Kha05]. To find the opti-
mal amplitudes ξℓ(t) to transfer from the initial state ρ̂(t0 := 0) to a target state ρ̂tar
at the final time tf . For hermitian ρ̂tar and ρ̂(tf ) the performance index is defined
as

Φ0 = ⟨ρ̂tar, ρ̂(tf )⟩HS = Tr[ρ̂tarρ̂(tf )] . (4.11)
A more general approach to obtain the performance index can be found in [Kha05]
and [Goe15]. By discretising the interval in N equal spaced steps ∆t = tf

N
, the time

evolution operator after the j-th step takes the form

Ûj = exp
[
−∆t

(
Ĥ0 +

L∑
ℓ

uℓ(j)Ĥℓ

)]
. (4.12)

The performance index takes the form

Φ0 =
〈
ρ̂tar, ÛN . . . Û1ρ̂(0)Û

†
1 . . . Û

†
N

〉
HS

= Tr
[
ρ̂tarÛN . . . Û1ρ̂(0)Û

†
1 . . . Û

†
N

]
(4.13)

Hence the Hilbert-Schmidt product is invariant under cyclic permutation, Equa-
tion (4.13) is equivalent to

Φ0 =
〈
Û †
j+1 . . . Û

†
N ρ̂tarÛN . . . Ûj+1︸ ︷︷ ︸
=ρ̂

(j)
tar

, Ûj . . . Û1ρ̂(0)Û
†
1 . . . Û

†
j︸ ︷︷ ︸

=ρ̂(j)

〉
HS
.

(4.14)

The density operator at time t = j∆t is can be expressed as ρ̂(t) = ρ̂(j) and ρ̂
(j)
tar is

the target state which is propagated backwards at the same time. The derivative of
the performance index is derived in [Kha05]

δΦ0

δξℓ(j)
= − i

h̄

〈
ρ̂
(j)
tar , ∆t

[
Ĥℓ, ρ̂

(j)
]〉

HS
(4.15)
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To obtain the maximum or minimum of the performance index the control field
needs to be updated. In the case of maximization, the derivative of the performance
index with respect to the control amplitude is added with a sufficiently small factor
µ > 0 to the old control amplitude. In the case of minimization, the derivative is
subtracted.

ξℓ(j) → ξℓ(j) ± µ
δΦ0

δξℓ(j)
. (4.16)

This method can be used for pulse optimization and is then referred to as gradient
ascend pulse engineering (GRAPE) [Kha05]. The steps needed for an implementa-
tion are depicted in Figure 4.1.

Initial control guess ξℓ(j)

Compute ρj = Ûj . . . Û1ρ̂0Û
†
1 . . . Û

†
j

Compute ρ̂
(j)
tar = Û †

j+1 . . . Û
†
N ρ̂tarÛN . . . Ûj+1

Evaluate δΦ0
δξℓ(j)

and update
ξℓ(j) using Equation (4.16)

Is
∣∣∣ δΦ0
δξℓ(j)

∣∣∣ ≤ µ?

stop

no

yes

Figure 4.1.: Flowchart for implementing GRAPE.

This protocol is employed, when the dimension of the control vector is large. Since
only two full time propagations are needed, it can be much faster than a conven-
tional implementation to obtain the gradient δΦ0/δξℓ(j) . Therefore, this method is
well-suited for the optimization of for example nuclei magnetic resonance pulse se-
quences. Another advantage of this method is that the pulses can be truly arbitrary
and the orders of magnitudes of the amplitudes can be much higher compared to
other optimization schemes.
However, this method does not yield a fast convergence. To obtain faster con-
vergences, Newton’s method can be implemented. For that the second derivative
needs to be computed. The second derivative is generally obtained from the Hessian
matrix H(j) with entries

H(j)
a,b =

δ2Φ0

δξa(j)δξb(j)
. (4.17)
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However the computation of the full Hessian matrix is expensive. Therefore, the
Hessian is estimated with help of available information from δΦ0

δξℓ(j)
. Such schemes

are called quasi-Newton methods [Goe15].

4.2.1. Reduction of radio frequency power and limited radio
frequency amplitudes

In experiments, high radio frequency powers are often not feasible to implement.
This is especially true for pulse engineering, since the modulation needs to be much
lower than the frequency it self. Furthermore, radio frequency amplitudes are only
available in limited ranges and radio frequency amplitudes lead to thermal noise
due to heating. To obtain a lower and a more accessible control amplitude, the
previously described method can be applied. By penalizing high amplitudes, the
performance function takes the form

ΦRF = a
N∑
k=1

L∑
ℓ

ξ2ℓ (j)∆t, (4.18)

with a is the weight of the penalty for high rf-powers. The gradient takes the form

δΦRF

δξℓ(j)
= −2aξℓ(j)∆t . (4.19)

When the maximal available amplitude ξmax is exceeded, the amplitude ξℓ(j) is
set to ξmax, when updating the amplitudes. Therefore, the algorithm depicted in
Figure 4.1 can still be applied.

4.2.2. Robustness
To obtain higher stability in an implementation, it is crucial to find the optimal
performance under the influence of experimental imperfections. For a range of pa-
rameters ζ, which account for radio frequency miscalibration and radio frequency
inhomogenity for a range of radio frequency amplitudes, this method can also be
used. If this set is sampled over finite elements ζp, the performance function is ob-
tained as the sum over these finite elements. Assuming the population transfer is
hermitian, as in 4.2, the performance function is obtained as [Kha05]

Φtot =
∑
p

〈
ρ̂
(j)
tar(ζp) , ρ̂

(j)(ζp)
〉

HS (4.20)

with the derivative

dΦtot

dξℓ(j)
= − i

h̄

∑
p

〈
ρ̂
(j)
tar(ζp) , ∆t

[
Ĥℓ, ρ̂

(j)(ζp)
]〉

HS
. (4.21)

This method can also implemented for other noise sources, like chemical shifts in a
sample or other experimental imperfections.
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5. Results
In this chapter, invariant-based reverse engineering is applied to a trapped ion to
obtain a speed-up in an adiabatic expansion/compression. By allowing non-confining
potentials for a short period of time, much faster processes can be obtained.
Most of the presented results have been published in:
Transient Non-Confining Potentials for Speeding Up a Single Ion Heat Pump,
E. Torrontegui, S. T. Dawkins, M. Göb, K. Singer, New Journal of Physics 20,
105001 (2018).

5.1. Proposed experimental implementation
To implement a shortcut to adiabaticity a common voltage will be applied to the
end-caps. The radio frequency voltages on the rod electrodes will be switched off.
This is necessary, because the radio frequency voltage can only be modulated more
slowly than the its frequency of the radio drive. Furthermore, in the tapered de-
sign, the radio frequency potentials lead to a coupling between the radial and axial
degrees of freedom. Switching off the radio frequency driven radial confinement re-
quires a solid state radio frequency toggle switch [Tan09] in front of a high voltage
radio frequency generator [Jon97]. More recent setups employ a low voltage radio
frequency power supply connected to subsequent radio frequency amplifier with 50Ω
impedance instead off a high voltage radio frequency generator. The impedance of
the ion trap itself is matched using the inductive coupling of a helical resonator
[Siv12]. To avoid reflections, the power needs to be feed to a dump with the same
impedance as the radio frequency trapping electrodes of the ion trap. This is de-
picted in 5.1.

Dump
impedance

low voltage
RF source Amplifier Helical

Resonator
Toggle switch

To trap

Figure 5.1.: Schematic for fast switching off rf voltages to the trap electrodes.

https://doi.org/10.1088/1367-2630/aae3ee
https://doi.org/10.1088/1367-2630/aae3ee
https://doi.org/10.1088/1367-2630/aae3ee
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To implement the shortcut protocol in a linear Paul trap without taper (see Fig-
ure 1.1), it is sufficient to lower the amplitude during the shortcut, hence axial and
radial direction are not coupled by the oscillating saddle potential.
The 3D-Hamiltionian of an ion trapped in a confining potential of a Paul trap (Sec-
tion 1.2.1), supplied by symmetric driven rf voltages and dc voltages on the end-caps
reads

Ĥ =
p̂2

2m
+
m

2
[Ω(t) + ∆(t)]2 + x̂2 +

m

2
[Ω(t) + ∆(t)]2 + ŷ2 +

m

2
ω2
z(t)ẑ

2 , (5.1)

with p̂ = (p̂x, p̂y, p̂z), ωz(t) the trapping frequency in axial direction and ωr(t) =
ωx(t) = ωy(t) = Ω(t) +∆(t) the trapping frequencies in radial directions, which are
composed of a combination of radio frequency and dc voltages. It is important to
keep in mind that the resulting trapping frequency is not obtained by simply adding
the frequencies of the pseudo potential and the direct current potential. Especially,
when large voltages are involved. For further insight, see [Lei03].
The ion is symmetrically confined in the x-y plane. The energy of these two degrees
of freedom are used as the working agent. The degree of freedom in the axial
direction is considered as classical piston, which is driven by the working agent.
Furthermore, the axial degree of freedom can be neglected, because the ion is held
at the minimum of the confinement in z-direction. Because of the radial symmetry,
the radial terms in Equation (5.1) reads

Ĥr =
p̂2r
2m

+
1

2
mω2

r(t)r̂
2 , (5.2)

with p̂2r = p̂2x + p̂2y and r̂2 = x̂2 + ŷ2. It comes to notice, that the radial Hamiltonian
Ĥr has the same structure as in Equation (3.9). Because of this, the trapping
frequency can be changed from ωr(0) = ωr,0 to ωr(tf ) = ωr,tf by using the invariant-
based reverse engineering approach, which is described in Section 3.3. A shortcut
to adiabaticity protocol ω2(t) = ωr,0

b4r(t)
− b̈r(t)

br(t)
can be reverse-engineered, with the free

function br(t) satisfying the frictionless boundary conditions (Equation (3.8)). The
compression/expansion ratio reads γr =

√
ωr,0/ωr,tf .

5.2. Robustness improvements
The control of fast changing voltages is prone to errors. To make the shortcut proto-
col as resilient to noise as possible, gradient descent methods are employed to reduce
the employed power (4.2.1). This leads to an improved heat extraction process with
the optimized protocol, since the main source of imperfections is the time varia-
tion of ω2(t). The largest limitations are the slew rate and bandwidth limitation of
digital-to-analog converters. Therefore, a slow change in ω2(t) is desired. Due to the
freedom in constructing the protocol during the shortcut additional constraints can
be implemented. For example, dω2(t)/dt = ∂t(ω

2(t)) can be minimized to consider
these experimental constraints.
Minimizing the power needed to perform the shortcut will improve the heat extrac-
tion process. Therefore, the maximal absolute value of the derivative of the control
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with respect to time in the interval t ∈ [0, tf ], max |∂t(ω2(t))|, needs to be mini-
mized. The trivial solution is obtained for ∂t(ω2(t)) = 0, which yields the control
ω2

uopt(t) = const. This violates the boundary conditions (3.12) and is therefore, not
a physical solution. Furthermore, this control does not yield a change in frequency
and is therefore not suitable to perform such a change. Under the assumption that
ω2(t) is continuous over the closed interval [0, tf ] and differentiable over the open
interval (0, tf ), the mean value theorem yields a useful bound. For ω2(0) = ω2

0 and
ω2(tf ) = ω2

tf
, the absolute maximum of ∂t(ω2(t)) needs to be

dω2(t)

dt ≥
ω2
0 − ω2

tf

tf
. (5.3)

The equality holds for the linear control ω2(t) = ω2
0+
(
ω2
0 − ω2

tf

)
t/tf . The free func-

tion b(t), obtained by Equation (3.17), violates the imposed boundary conditions
(3.12). Instantaneous switching would be needed to implement such a control, due
to discontinuities in ḃ(t) and b̈(t) at t = 0 and tf . This is often not experimentally
feasible, especially in short time frames.
The free function has a non-unique solution to fulfill the frictionless boundary con-
ditions. Exploiting this fact, the function can be expanded to a higher order, which
yields additional parameters ai [Lev17; Lev18]. Due to this additional parameter the
ω2(t, ai) can be optimized using the gradient descent method to obtain the optimal
solution ω2

opt(t, ai).
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(a) Optimized and standard control ω2(t).
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Figure 5.2.: The shortcut protocol constructed with a standard 6-th order intrepo-
lation (green dashed line) and the control with additional parameter
(black solid line) are visualized in 5.2a and there respective time deriva-
tives in 5.2b.

To demonstrate this, an expansion from ω(0)/2π = 3MHz to ω(tf )/2π = 1MHz
over the time of tf = 20 ns was constructed. A reduction of max

∣∣∂t(ω2
opt(t))

∣∣/
max |∂t(ω2(t))| ∼ 0.78 is obtained by expanding b(t) to the 6-th order.

5.3. STA in comparison
To compare the performance, the STA protocol is compared to the linear protocol,
which is derived in Section 5.2, and the smooth ramp protocol. The smooth ramp
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protocol reads

ω(t) =
ω0e

Γt0 + ωfe
Γt

eΓt0 + eΓt
, (5.4)

where Γ denotes the slope of the ramp. A expansion from ω0/2π = 3MHz to
ωf/2π = 1MHz over a time of tf1 = 200 ns and tf2 = 20 ns. The three protocols are
depicted in Figure 5.3.
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(a) Controls for tf = 200 ns.
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(b) Controls for tf = 20 ns.

Figure 5.3.: The shortcut protocol (black solid), the linear ramp (blue dotted) and
the smooth ramp (red dashed) in comparison for a duration of 200 ns
(a) and 20 ns (b). The inset in (b) shows a higher detailed view of the
area with the grey rectangle.

Already for a duration of 200 ns, it is not feasible to implemented the presented
shortcut protocol using amplitude modulation. Hence the duration is in the order
of one period with typical frequencies Ωrf/2π ∼ 20MHz. Therefore, the effective
trapping frequency in radial directions need to be modulated by supplying voltages
to the cap electrodes. By allowing negative ω2 as well, a significant speed up of one
order of magnitude is obtained. These negative squared frequency corresponds to a
non-confining potential, which can be also applied by ramping the dc voltage on the
cap electrodes. The feasibility of such transient non-confining potentials is further
discussed in Section 5.4.
Furthermore, it is of particular interest to examine the adiabaticity parameter µ
(3.2) of the presented protocols. These are presented in Figure 5.4.
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(a) Adiabaticity coefficient for tf = 200 ns.
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Figure 5.4.: The adiabaticity coefficient of the shortcut protocol (black solid), the
linear ramp (blue dotted) and the smooth ramp (red dashed) in com-
parison for a duration of 200 ns (a) and 20 ns (b).
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The STA protocol leads to a clear non-adiabatic behavior. In Figure 5.4a it comes
to notice, that approaching tf the adiabaticity parameter diverges. It becomes even
clearer in Figure 5.4b. Here, the adiabaticity parameter diverges at 10 ns, due to
the zero crossing of ω2(t). Even though this protocols are not adiabatic, they still
lead to a transfer without unwanted excitations.

5.3.1. Fidelity evaluation

To verify that the shortcut protocol indeed provides a super-adiabatic drive, the over-
lap to the target state ρ̂tar needs to be evaluated. Therefore, the fidelity F(ρ̂(tf ), ρ̂tar)
(3.30) is computed for all three presented protocols in dependence of the duration
of the protocol tf .
A thermal state with initial inverse temperature β0 described by the Hamilto-
nian Ĥ(0) with frequency ωr,0 is fully characterized by its statistical moments
X̄(0)1 = X̄(0)2 = X̄(0)5 = 0,

X̄3(0) = l20 coth
(
β0h̄ωr,0

2

)
and X̄4(0) = k20 coth

(
β0h̄ωr,0

2

)
, (5.5)

with l0 =
√

h̄
2mωr,0

and k0 =
√

h̄mωr,0

2
. The target state has an inverse temperature

βf = γ2rβ0 at a final frequency ωr,tf with similar statistical moments. The fidelity
of the three protocols with an initial thermal state is depicted in Figure 5.5a. As
depicted in Figure 5.5a, the invariant-based reverse engineered control has a fidelity
of 1 by construction, independent of the final time tf .
In analogy to the thermal states, the fidelity of the three presented protocols is
examined for coherent states. The initial statistical moments read

X̄1(0) = 2l0 Re(α0), X̄2 = 2k0 Im(α0),

X̄3(0) = X̄2
1(0) + l20, X̄4(0) = X̄2

2(0) + k20, and X̄5(0) = 4h̄Re(α0) Im(α0).
(5.6)

They correspond to Ĥ(0) and ωr,0. The displacement parameter of the target state
αf = α0e

−igωr,0 with g =
∫ tf
0

dτ/b(t)2 at Ĥ(tf ). The initial displacement parameter
was chosen α0 = 1 + i. The fidelity of the three compared protocols is depicted in
Figure 5.5b. The shortcut to adiabaticity protocol leads again to a fidelity of 1 by
construction.
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Figure 5.5.: Fidelity of the shortcut protocol (black solid), the linear ramp (blue
dotted) and the smooth ramp (red dashed) in dependence of the final
time tf with an initial thermal state (a) and an initial coherent state
(b).
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5.4. Confirmation of trapping condition
As seen in Section 5.3.1, the shortcut has by construction a fidelity of 1 even at
short durations. But this does not guarantee stable trapping conditions during the
transient non-confining period. Therefore, the position of the ion in the x-y plain
was simulated, using the Strömer-Verlet method, which is described in Section 4.1
and a minimal example for a three-dimensional harmonic oscillator is found in Ap-
pendix A.1.
In this simulation, the acceleration was computed from the analytic formula (1.5),
therefore also accounting for micromotion. The initial parameters were chosen ran-
domly from a Gaussian distribution with a mean value of zero and a variance of√
kBT/m, with the Boltzmann constant kB and temperature T = 2mK. From

these initial parameter, the position and velocity were propagated for a whole pe-
riod, before the shortcut protocol (Figure 5.6a) or the linear ramp (Figure 5.6b) was
applied with a duration of tf = 20 ns.
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(a) Simulation with the STA protocol.
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(b) Simulation with the linear ramp.

Figure 5.6.: Simulated trajectories of an ion under the influence of the shortcut pro-
tocol (a) and the linear ramp (b).

Both protocols yield stable trapping conditions. The shortcut to adiabaticity
yields a phase relation preserving drive, which with the linear ramp drive the ion is
excited. This excitation leads to a rotation of the ion’s elliptical trajectory.
As observed, the shortcut to adiabaticity protocol leads to stable trapping condi-
tion even with non-confining potentials for a brief duration. Thus it is feasible to
implement experiment, hence the ion is trapped after the super adiabatic expan-
sion/compression. Though this method requires sophisticated electronics to allow
for a fast and precise control of the radio frequency voltages, which are required to
perform the shortcut.
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6. Outlook
In conclusion, the proposed protocol can be utilized to speed up adiabatic processes
for trapped ions, yielding an ultra-fast and high-fidelity compression/expansion pro-
cess. The use of transient non-confining potentials enables an even higher speed up.
By optimizing the protocol, a lower power to perform the shortcut is obtained, lead-
ing to lower noise on the control and therefore a more efficient heat pump. This
protocol can be utilized in Otto cycle based heat engines and refrigerators. The
cycle time can be drastically reduced, which gives rise to the power of the engine.
By implementing a quantum Otto heat engine [Kos17] into the experimental system
of the single-atom heat engine, more underlying questions can be studied. Further-
more, finite time thermalization processes can be investigated in the presented set
up. By implementing shortcuts to equilibration (STE) [Dan19b] or discrete isother-
mal process (DIP) [Ma18], a Stirling engine with a single atom running at a finite
time can be realized. These stroke heat engines/refrigerators [Kos84] yield a toolbox
for to approach absolute zero temperature [Tor13a] and for testing thermodynamic
laws at a single particle level. The presented expansion/compression protocol can
be utilized for heat engines/refrigerators with continuous bath contact [Kos14].

6.1. Single-atom heat engine as sensible quantum
heat probe

The single-atom heat engine operates between two baths. By examining the work
output of the engine, operating with one known and one unknown bath, it is possible
to characterize the unknown bath.
Due to the coupling of axial and radial direction, work is flowing in the axial di-
rection, increasing the amplitude of the oscillation. The growth of the amplitude
d∆z/dt is linear and solely dependent on the difference in temperature of ∆T . The
first numerical results confirmed the analytic model.
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A. Appendix

A.1. Implementation of the Strömer-Verlet method
In this chapter, an implementation of the Strömer-Verlet method is presented. As
an example we will use a harmonic potential which confines a particle in three
dimension. The acceleration can be calculated by simply taking minus the derivative
of the potential with respect to the coordinate and divide it by the mass.

1 #include <iostream>
2 #include <fstream>
3 #include <limits>
4 #define _USE_MATH_DEFINES
5 #include <math.h>
6

7 void stroemerVerlet(double * oldPos, double * oldVel,double * omega,
double dt, int dim, double * newPos,double * newVel) {

8 double * velHalf = new double[dim];
9 for (int i = 0; i < dim;++i) {

10 velHalf[i] = oldVel[i] + dt / 2.0*(-omega[i]*omega[i]*oldPos[i]);
11 }
12 for (int i = 0; i < dim; ++i) {
13 newPos[i] = oldPos[i] + dt * velHalf[i];
14 }
15 for (int i = 0; i < dim; ++i) {
16 newVel[i] = velHalf[i]+dt / 2.0*(-omega[i] * omega[i] * newPos[i]);
17 }
18 delete[] velHalf;
19 }
20

21

22 int main(int argc, char ** argv) {
23

24 double finalTime = 1e-5;
25 double dt = sqrt(std::numeric_limits <double >::epsilon()*finalTime);
26 int steps = static_cast <int>(finalTime / dt);
27 std::cout << steps << std::endl;
28

29 //allocate array for position and velocity
30 double ** position = new double*[steps];
31 double ** velocity = new double*[steps];
32 for (int i = 0; i < steps; ++i) {
33 position[i] = new double[3];
34 velocity[i] = new double[3];
35 }
36 double * velHalf = new double[3];
37

38 //set initial conditions
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39 position[0][0] = 1.0e-6;
40 position[0][1] = -1.0e-6;
41 position[0][2] = 1.0e-6;
42 velocity[0][0] = 0.0e-6;
43 velocity[0][1] = 0.0e-6;
44 velocity[0][2] = 0.0e-6;
45

46 //set frequency
47 double omega[3];
48 omega[0] = 2*M_PI*1.0e6;
49 omega[1] = 2 * M_PI*1.0e6;
50 omega[2] = 2 * M_PI*0.1e6;
51

52 for (int i = 1; i < steps; ++i) {
53 stroemerVerlet(position[i - 1], velocity[i - 1], omega, dt,3,

position[i], velocity[i]);
54 if (!(i % 100)) std::cout << i << " / " << steps << std::endl;
55 }
56

57 std::ofstream results;
58 results.open("results.txt");
59 for (int i = 0; i < steps; ++i) {
60 results << i * dt << '\t' << position[i][0] << '\t' << position[i

][1] << '\t' << position[i][2] << '\t' << velocity[i][0] << '\t' <<
velocity[i][1] << '\t' << velocity[i][2] << std::endl;

61 }
62

63 results.close();
64 std::cin.get();
65 return 0;
66 }

In Figure A.1 the result of this example is depicted.

Figure A.1.: Movement of an particle in a three-dimensional harmonic potential.
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B. List of publications
The following article has been published during the preparation of this thesis.

Transient Non-Confining Potentials for Speeding Up a Single Ion
Heat Pump
E. Torrontegui, S. T. Dawkins, M. Göb, K. Singer
New Journal of Physics 20, 105001 (2018).

We propose speeding up a single ion heat pump based on a tapered ion trap. If a
trapped ion is excited in an oscillatory motion axially the radial degrees of freedom
are cyclically expanded and compressed such that heat can be pumped between two
reservoirs coupled to the ion at the turning points of oscillation. Through the use of
invariant-based inverse engineering, we can speed up the process without sacrificing
the efficiency of each heat pump cycle. This additional control can be supplied with
additional control electrodes or it can be encoded into the geometry of the radial
trapping electrodes. We present novel insight how speed up only limited by the mag-
nitude of the control voltage can be achieved through the use of inverted harmonic
potentials. We have verified that stable trapping conditions can be achieved.
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