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We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use
the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the
spin-degree of freedom. Therefore, the force estimation iscarried out simply by observing the Ramsey-type os-
cillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying
the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling
schemes in the Jaynes-Cummings and Jahn-Teller models, ourforce sensing protocols can be made robust to the
spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual
spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin
dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of
the force with a sensitivity beyond the yN/

√
Hz range, i.e. in the xN/

√
Hz (xennonewton, 10−27). The Jahn-

Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring
ultra-low voltages.

PACS numbers: 03.67.Ac, 03.67.Bg, 03.67.Lx, 42.50.Dv

I. INTRODUCTION

Over the last few years, research of mechanical systems
coupled to quantum two-level systems has attracted great
deal of experimental and theoretical interest [1, 2]. Micro-
and nano-mechanical oscillators can respond to very weak
electric, magnetic and optical forces, which allows one to
use them as highly sensitive force detectors [3]. For exam-
ple, the cantilever with attonewton (10−18 N) force sensitiv-
ity can be used to test the violation of Newtonian gravity at
sub-millimeter length scale [4]. With current quantum tech-
nologies coupling between a nanomechanical oscillator and
a single spin can be achieved experimentally by using strong
magnetic-field gradient. Such a coupling paves the way for
sensing the magnetic force associated with the single electron
spin [5]. To this end, a recent experiment demonstrated that
the coherent evolution of the electronic spin of an individual
nitrogen vacancy center can be used to detect the vibration of
a magnetized mechanical resonator [6].

Another promising quantum platform with application in
high-precision sensing is the system of laser-cooled trapped
ions, which allows excellent control over the internal and mo-
tional degrees of freedom [7]. Force sensitivity of order of 170
yN Hz−1/2 (10−24 N) was reported recently with an ensemble
of ions in a Penning trap [8]. Force measurement down to 5
yN has been demonstrated experimentally using the injection-
locking technique with a single trapped ion [9]. Moreover,
force detection with sensitivity in the range of 1 yN Hz−1/2 is
possible for single-ion experiments based on the measurement
of the ion’s displacement amplitude [10].

In this work, we propose ion-based sensing schemes for
measuring very rapidly varying forces, which follow an ear-
lier proposal [11] wherein the relevant force information is
mapped into the spin degrees of freedom of the single trapped
ion. In contrast to [11], the techniques proposed here do not

require specific adiabatic evolution of the control parameters
but rather they rely on using Ramsey-type oscillations of the
ion’s spin states, which are detected via state-dependent flu-
orescence measurements. Moreover, we show that by using
dynamical decoupling schemes, the sensing protocols become
robust against dephasing of the spin states caused by thermal
and magnetic-field fluctuations.

We consider a quantum system described by the Jaynes-
Cummings (JC) model which can be used as a highly sensi-
tive quantum probe for sensing of the axial force component.
By applying an additional strong driving field [12, 13] the de-
phasing of the spin states induced by the residual spin-phonon
interaction can be suppressed such that the sensing protocol
does not require initial ground-state cooling of the ion’s vibra-
tional state. We show that the axial force sensing can be im-
plemented also by using a probe represented by the quantum
Rabi (QR) model. Because of the absence of residual spin-
motional coupling in this case, the force estimation is robust
to spin dephasing induced by the thermal motion fluctuations.

Furthermore, we introduce a sensing scheme capable to ex-
tract the two-dimensional map of the applied force. Here the
quantum probe is represented by the Jahn-Teller (JT) model,
in which the spin states are coupled with phonons in two spa-
tial directions. We show that the two transverse components
of the force can be measured by observing simply the coherent
evolution of the spin states. In order to protect the spin coher-
ence during the force estimation we propose a dynamical de-
coupling sequence composed of phonon phase-shift operators,
which average to zero the residual spin-phonon interaction.

We estimate the optimal force sensitivity in the presence of
motional heating and find that with current ion trap technolo-
gies force sensitivity better than 1 yN Hz−1/2 can be achieved.
Thus, a single trapped ion may serve as a high-precision sen-
sor of very weak electric fields generated by small needle elec-
trodes with sensitivity as low as 1µV/m Hz−1/2.
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This paper is arranged as follows. In Sec.II we describe
the sensing protocol for detection of the axial component of
very weak forces using a quantum probe represented by the
Jaynes-Cummings and quantum Rabi models. It is shown that
by using dynamical decoupling technique the sensing proto-
col using Jaynes-Cummings system is immune to thermal spin
dephasing. In Sec.III we introduce a sensing scheme, which
is able to detect the two components of the external force. Fi-
nally, in Sec.IV we summarize our findings.

II. 1D FORCE SENSING

A. Jaynes-Cummings quantum probe

In our model we consider a single two-state ion with a
transition frequencyω0, in a linear Paul trap with an ax-
ial trap frequencyωz. The small axial oscillation of the ion
is described by the vibrational Hamiltonian̂Hax = h̄ωzâ†â,
whereâ† (â) creates (annihilates) a phonon excitation. We as-
sume that the ion interacts with a laser field with a frequency
ωL =ω0−ωz+δ , tuned near the red-sideband resonance with
a detuningδ . The interaction Hamiltonian in the Lamb-Dicke
limit and the rotating-wave approximation reads [14–16]

ĤJC= h̄ω â†â+ h̄∆σz+ h̄g(σ−â†+σ+â), (1)

with δ = ∆−ω , where∆ is the effective spin frequency and
ω is the effective phonon frequency. Here,σx,y,z are the Pauli
matrices,σ± are the respective raising and lowering operators
for the effective spin system, andg determines the strength of
the spin-phonon coupling.

The external time-varying force with a frequencyωd =
ωz−ω , e.g.,F(t) = F cos(ωdt), displaces the motional am-
plitude of the ion oscillator along the axial direction, as de-
scribed by the term

ĤF =
zaxF

2
(â†+ â). (2)

Herezax =
√

h̄/2mωz is the spread of the zero-point wave-
function along the axial direction andF is the parameter we
wish to estimate. The origin of the oscillating force can
be a very weak electric field, an optical dipole force, spin-
dependent forces created in a magnetic-field gradient or a
Stark-shift gradient, etc. With the term (2) the total Hamil-
tonian becomes

ĤT = ĤJC+ ĤF . (3)

In the following, we consider the weak-coupling regime
g≪ ω , in which the phonon degree of freedom can be elimi-
nated from the dynamics. This can be carried out by applying
the canonical transformation̂U = eŜ to ĤT (3) such thatĤJC

eff =

e−ŜĤTeŜ with Ŝ= (g/ω)(σ+â− σ−â†) + (ΩF/g)(â− â†).
Keeping only the terms of order ofg/ω we arrive at the fol-
lowing effective Hamiltonian (see the Appendix),

ĤJC
eff = h̄∆̃σz− h̄ΩF σx− Ĥ ′

JC, (4a)

Ĥ ′
JC=

h̄g2

ω
σzâ

†â. (4b)
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Figure 1: (Color online) a) Time-evolution of the probability to find
the system in spin state|↑〉 for the JC system. We compare the prob-
abilities derived from the original Hamiltonian (3) (dots) and the ef-
fective Hamiltonian (4a) (solid lines). We assume an initial thermal
distribution with a mean phonon number ¯n= 1.2. The parameters are
set tog= 4 kHz,ω = 170 kHz,∆ = g2/2ω, zax = 14.5 nm,F = 20
yN andΩ = 10 kHz. For the same initial state but in the absence of
driving field (Ω = 0), the signal loses contrast (blue dashed line). b)
Contrast of the Rabi oscillations defined asS= P↑(t2)−P↑(t1) with
t1 = π/2ΩF andt2 = π/ΩF with ΩF = 60 kHz as a function of the
mean phonon number ¯n.

This result indicates that the spin-motional interaction in
Eq. (3) shifts the effective spin frequency by the amount
∆̃ = ∆−g2/2ω , while the effect of the force term is to induce
transitions between the spin states. The strength of the tran-
sition is quantified by the Rabi frequencyΩF = gzaxF/2h̄ω ,
which is proportional to the applied forceF . Hence the force
estimation can be carried out by observing the coherent evo-
lution of the spin population that can be read out via state-
dependent fluorescence.

The last termĤ ′
JC in Eq. (4a) is the residual spin-motional

coupling. This term affects the force estimation because it
can be a source of pure spin dephasing [17]. Indeed, theσz
factor in Ĥ ′

JC induces transitions between the eigenstates|±〉
of the operatorσx depending on the vibrational state of the
oscillator. As long as the oscillator is prepared initiallyin an
incoherent vibrational state at a finite temperature this would
lead to a random component in the spin energy. As we will see
below, by using dynamical decoupling the effect of the pure
spin dephasing can be reduced.

The sensing protocol starts by preparing the system in state
ρ̂(0) = |↑〉〈↑|⊗ ρ̂osc, whereρ̂osc stands for the initial density
operator of the oscillator. According to Eq. (4a), the evolution
of the system is driven by the unitary propagatorÛJC(t,0) =

e−iĤJC
eff t/h̄. Assuming for the moment thatρ̂osc= |0〉〈0| where

|n〉 is the harmonic oscillator Fock state withn phonon ex-
citations, the probability to find the system in state|↑〉 is
P↑(t) = cos2(ΩFt), where for simplicity we set∆ = g2/2ω ,

hencẽ∆ = 0. In this case, the effect of̂H ′
JC automatically van-

ishes such that the signal exhibits a cosine behavior according
to the effective Hamiltonian (4a). An initial thermal phonon
distribution, however, would introduce dephasing on the spin
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Figure 2: (Color online) The sensitivity of the force measurement
versus timet for various values ofω. We assume an initial thermal
vibrational state with a mean phonon number ¯n= 1. The solid lines
represent the analytical result given by Eq. (7) while the dots are
the exact numerical solution with the Hamiltonian (3) including the
strong driving term. The other parameters are set tog= 4 kHz and
Ω = 7 kHz.

oscillations caused by thermal fluctuations. The spin coher-
ence can be protected, for example, by applying a sequence of
fast pulses, which flip the spin states and average the residual
spin-motional interaction to zero during the force estimation
[18]. On the other hand, because the relevant force informa-
tion is encoded in theσx term in Eq. (4a), continuously apply-
ing an additional strong driving field̂Hd = h̄Ωσx in the same
basis [12, 13], such thatĤT → ĤT + Ĥd, would not affects the
force estimation but rather will suppress the effect of the resid-
ual spin-motional coupling. Indeed, going in the interaction
frame with respect tôHd, the residual spin-motional coupling
becomes

Ĥ ′
JC(t) =

h̄g2

ω
(e2iΩt |+〉〈−|+e−2iΩt |−〉〈+|)â†â. (5)

The latter result indicates that the off-resonance transitions be-
tween states|±〉 induced byĤ ′

JC are suppressed ifg2/2ω ≪
Ω. By separating the pulse sequences fromt = 0 to t/2 with
a HamiltonianĤT + Ĥd, and then fromt/2 to t with a Hamil-
tonianĤT − Ĥd, the spin states are protected from the thermal
dephasing and the signal depends only on the Rabi frequency
ΩF at the final timet. Note that the effect of the magnetic field
fluctuations of the spin states is described by an additionalσz
term in Eq. (4a), therefore the strong driving field used here
suppresses the spin dephasing caused by the magnetic-field
fluctuations, as was experimentally demonstrated [19, 20].

In Fig. 1(a) we show the time evolution of the probabil-
ity P↑(t) for an initial thermal vibrational state. Applying the
driving field during the force estimation leads to reductionof
the spin dephasing and hence protecting the contrast of the
Rabi oscillations, see Fig.1(b). We note that a similar tech-
nique using a strong driving carrier field for dynamical decou-
pling was proposed for the implementation of a high-fidelity
phase gate with two trapped ions [21, 22].

The shot-noise-limited sensitivity for measuringΩF is

δΩF =
∆P↑(t)

∂P↑(t)
∂ΩF

√
ν
, (6)

where∆P↑(t) stands for the variance of the signal andν =T/τ
is the repetition number. HereT is the total experimental
time, and the timeτ includes the evolution time as well as the
preparation and measurement times. Because our technique
relies on state-projective detection, such that the preparation
and measurement times are much smaller than the other time
scale, we assumeτ ≈ t. From Eq. (6) we find that the sen-
sitivity, which characterizes the minimal force difference that
can be discriminated within a total experimental time of 1 s,
is

Fmin

√
T =

h̄ω
gzax

√
t
. (7)

In Fig. 2 we show the sensitivity of the force estimation ver-
sus timet for different frequenciesω assuming an initial ther-
mal vibrational state. For an evolution time of 20 ms, force
sensitivity of 2 yN Hz−1/2 can be achieved.

Let us now estimate the effect of the motional heating
which limits the force estimation. Indeed, the heating of the
ion motion causes damping of the signal, which leads to [14]

P↑(t) =
1
2
[1+e−γt cos(2ΩF t)], (8)

whereγ is the decoherence rate. We assume thatγ ∼ 〈ṅax〉
where〈ṅax〉 stands for the axial ion’s heating rate. Thus, the
optimal force sensitivity is [23]

Fmin

√
T =

h̄ω
gzax

√
2〈ṅax〉e. (9)

Using the parameters in Fig.2 with ω = 180 kHz and assum-
ing 〈ṅax〉= 0.01 ms−1 we estimate force sensitivity of 2.4 yN
Hz−1/2. For a cryogenic ion trap with heating rate in the range
of 〈ṅax〉 = 1 s−1 and evolution time oft = 500 ms, the force
sensitivity would be 0.8 yN Hz−1/2.

B. Quantum Rabi model

An alternative approach to sense the axial component of the
force is to use a probe described by the quantum Rabi model,

ĤQR = h̄ω â†â+ h̄gσx(â
†+ â), (10)

which includes it the counter-rotating wave terms. This
Hamiltonian can be implemented by using a bichromatic laser
field along the axial direction [24]. In the weak-coupling
regime,g ≪ ω , we find by using the unitary transformation
Û = eŜ with Ŝ= −(g/ω)σx(â† − â)− (2ΩF/g)(â†− â) that
(see the Appendix)

ĤQR
eff =−2h̄ΩF σx. (11)
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Figure 3: (Color online) Time-evolution of the probabilityto find the
system in spin state|↑〉 for the QR system. We assume an initial
thermal vibrational state with a mean phonon number ¯n= 1.2. Due
to the absence of residual spin-motion coupling the Rabi oscillations
are robust with respect to the spin dephasing caused by the thermal
fluctuations. We compare the probability derived from the Hamilto-
nian ĤT = ĤQR+ ĤF with the analytical solutionP↑ = cos2(2ΩF ).
The parameters are set tog= 4 kHz, ω = 170 kHz,zax = 14.5 nm,
F = 20 yN.

In contrast to Eq. (4a), now the effective Hamiltonian (11)
does not contain an additional residual spin-motional cou-
pling, which implies that the spins are immune to dephas-
ing caused by the thermal motion fluctuations, see Fig.3.
Thereby the force estimation can be carried out without ad-
ditional strong driving field. We find that the optimal force
sensitivity is similar to Eq. (9) but with extra factor of 2 in the
denominator,

Fmin

√
T =

h̄ω
2gzax

√
2〈ṅax〉e. (12)

Up to now we have considered probes that are responsive
only to the axial component of the force. In the following we
propose a sensing technique that can be used to detect the two
transverse components of the time-varying external force.

III. JAHN-TELLER QUANTUM PROBE

In conventional ion trap sensing methods, the information
on the force direction can be extracted by using the three spa-
tial vibrational modes of the ion [10, 25]. Such an experi-
ment requires an independent measurement of the displace-
ment amplitudes in each vibrational mode, which, however,
increases the complexity of the measurement procedure and
can lead to longer total experimental times. Here we show
that by utilizing the laser-induced coupling between the spin
states and the transverse ion oscillation we are able to detect
the transverse components of the force by observing simply
the coherent evolution of the spin states.

Indeed, let us consider the case in which the small trans-
verse oscillations of the ion with a frequencyωt described by

the HamiltonianĤt = h̄ωt(â†
xâx+ â†

yây) are coupled with the
spin states via Jahn-Teller interaction. Such a coupling can
be achieved by using bihromatic laser fields with frequencies
ωb,r = ω0 ± (ωt −ω) tuned respectively near the blue- and
red-sideband resonances, with a detuningω , which excite the
transversex andy vibrational modes of the trapped ion. The
interaction Hamiltonian of the system is given by [26, 27]

ĤJT = h̄ω(â†
xâx+ â†

yây)+ h̄gσx(â
†
x + âx)+ h̄gσy(â

†
y + ây).

(13)
Hereâ†

β andâβ are the creation and annihilation operators of
phonon excitations along the transverse direction (β = x,y)
with an effective frequencyω . The last two terms in Eq. (13)
describe the Jahn-TellerE⊗e spin-phonon interaction with a
coupling strengthsg. In the following, we assume that a clas-
sical oscillating force with a frequencyωd = ωt−ω displaces
the vibrational amplitudes along the transversex andy direc-
tions of the quantum oscillator described by

Ĥ~F =
ztFx

2
(â†

x + âx)+
ztFy

2
(â†

y + ây), (14)

wherezt =
√

h̄/2mωt is the size of the transverse ion’s har-
monic oscillator ground-state wavefunction.Fx andFy are the
two transverse components of the force we wish to estimate.
With the perturbation term (14) the total Hamiltonian becomes

ĤT = ĤJT+ Ĥ~F . (15)

Assuming the weak-coupling regime,g≪ ω , the two phonon
modes are only virtually excited. After performing the canon-
ical transformationÛ = eŜ of ĤT (15), where

Ŝ= (âx− â†
x)

(
g
ω

σx+
Ωx

g

)
+(ây− â†

y)

(
g
ω

σy+
Ωy

g

)
,

(16)
we obtain the following effective Hamiltonian (see the Ap-
pendix)

ĤJT
eff =−h̄Ωxσx− h̄Ωyσy+ Ĥ ′

JT. (17)

Here Ωx,y = gztFx,y/h̄ω are the respective driving Rabi fre-
quencies of the transition between spin states|↑〉 and|↓〉. The
last term in Eq. (17) is the residual spin-phonon interaction
described by

Ĥ ′
JT = 2i

h̄g2

ω
σz(â

†
xây− âxâ

†
y), (18)

which can be a source of thermal spin dephasing as long as the
two phonon modes are prepared in initial thermal vibrational
states.

The two-dimensional force sensing protocol starts
by preparing the system in state|ψ(0)〉 = (c↑(0) |↑〉 +
c↓(0) |↓〉)⊗

∣∣0x,0y
〉
, wherec↑,↓(0) are the respective initial

spin probability amplitudes and
∣∣nx,ny

〉
stands for the Fock

state withnβ excitations in each phonon mode. According to
the effective Hamiltonian (17) the evolution of the system is
driven by the free propagator̂UJT = e−iĤJT

efft/h̄. Neglecting the
residual spin-motional coupling (18) the propagator reads

Û0
JT(t,0) =

[
a b

−b∗ a∗

]
. (19)
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Figure 4: (Color online) a) Time-evolution of the probability to find
the system in spin state|↑〉 for the JT system. We compare the proba-
bility calculated from the Hamiltonian (15) assuming the initial states
|ψ(0)〉= |↑〉

∣∣0x,0y
〉

(red dots) and|ψ(0)〉= 2−1/2(|↑〉+ |↓〉)|0x,0y〉
(blue triangles) with those given by the effective Hamiltonian (17)
(solid lines). The parameters are set tog = 4 kHz, ω = 170 kHz,
zt = 12 nm,Fx = 20 yN andFy = 15 yN. b) Oscillations of the signal
for fixed t as a function of the phaseφ for an initial superposition
spin state.

Herea= cos(Ω̃t) andb= ie−iξ sin(Ω̃t) are the Cayley-Klein
parameters, which depend on the rms Rabi frequencyΩ̃ =
gzt
h̄ω |~F⊥|, which is proportional to the magnitude of the force

|~F⊥| =
√

F2
x +F2

y . In addition to|~F⊥|, we introduce the rela-

tive amplitude parameterξ = tan−1
(

Fy
Fx

)
. Assuming an initial

state withc↑(0) = 1, c↓(0) = 0, the respective probability to

find the system in state|↑〉 is P↑(t) = cos2(Ω̃t), which implies
that the Rabi oscillations depends only on the magnitude of
the force, see Fig.4(a). Using Eq. (6) we find that the shot-
noise-limited sensitivity for measuring the magnitude of the
force is given by

|~F⊥|min

√
T =

h̄ω
2gzt

√
t
. (20)

In the presence of motional heating of both vibrational modes,
the signal is damped with decoherence rateγ ∼ 〈ṅx〉+ 〈ṅy〉,
where〈ṅβ 〉 is the heating rate along theβ spatial direction.
Therefore we find that the optimal force sensitivity is

|~F⊥|min

√
T =

h̄ω
2gzt

√
2(〈ṅx〉+ 〈ṅy〉)e. (21)

It is important that due to the strong transverse confinement
the sensing scheme for measuring|~F⊥| is less sensitive to the
ion’s heating [28, 29]. Using the parameters in Fig.4 and
assuming〈ṅx〉= 〈ṅy〉= 1 s−1 we estimate force sensitivity of
0.6 yN Hz−1/2.

In order to detect the parameterξ we prepare the spin
state in an initial superposition state withc↑(0) = 1/

√
2 and

c↓(0) = eiφ/
√

2. Then the probability oscillates with time as

P↑(t) =
1
2

[
1+ sin(ξ −φ)sin(2Ω̃t)

]
. (22)

Hence, for fixed evolution timet, the Ramsey oscillations ver-
sus the phaseφ provide a measure of the relative phaseξ , see
Fig. 4(b).

In fact, Eq. (22) allows one to determine both the magnitude
of the force|Ω̃| and the mixing parameterξ from the same sig-
nal when plotted vs the evolution timet: |Ω̃| is related to the
oscillation frequency andξ to the oscillation amplitude. The
parameterξ can be determined also by varying the externally
controlled superposition phaseφ , until the oscillation ampli-
tude vanishes at some valueφ0; this signals the valueξ = φ0
(moduloπ).

Finally, we discuss the dynamical decoupling schemes,
which can be used to suppress the effects of the termĤ ′

JT (18)
during the force estimation. In that case, applying continu-
ous driving field, e.g., along theσx direction, would reduce
the thermal fluctuation induced bŷH ′

JT, but additionally, the
relevant force information, which is encoded in theσy term
in (17), will be spoiled. Here we propose an alternative dy-
namical decoupling scheme, which follows the Carr-Purcell-
Meiboom-Gill (CPMG) pulse sequence [30, 31], in which,
however, the single instantaneousπ pulse is replaced by the

phonon phase-flip operatorR̂π = eiπ â†
xâx. Such a phonon phase

shift ∆ωxτ = π can be achieved by switching the RF poten-
tial of the trap by the fixed amount∆ωx for a time τ [32].
The effect ofR̂π is to change the sign of thêH ′

JT such that
R̂†

πĤ ′
JTR̂π = −Ĥ ′

JT but it leaves the other part of the Hamil-
tonian (17) unaffected. Using that the pulse sequenceÛ1 =
R̂πÛJTR̂πÛJT eliminates the residual spin-phonon coupling in
the first order of the interaction timet, a high-order reduction
can be achieved by the recursionÛn = R̂πÛn−1R̂πÛn−1, which
eliminates the spin-phonon coupling up tonth order int.

IV. SUMMARY AND OUTLOOK

We have proposed quantum sensing protocols, which rely
on mapping the relevant force information onto the spin de-
grees of freedom of the single trapped ion. The force sensing
is carried out by observing the Ramsey-type oscillations ofthe
spin states, which can be detected via state-dependent fluores-
cence. We have considered quantum probes represented by
the JC and QR systems, which can be used to sense the axial
component of the force. We have shown that when using a
JC system as a quantum probe, one can apply dynamical de-
coupling schemes to suppress the effect of the spin dephasing
during the force estimation. When using a QR system as a
probe, the absence of a residual spin-phonon coupling makes
the sensing protocol robust to thermally-induced spin dephas-
ing. Furthermore, we have shown that the transverse-force
direction can be measured by using a system described by the
JT model, in which the spin states are coupled with the two
spatial phonon modes. Here the information of the magnitude
of the force and the relative ratio can be extracted by observ-
ing the time evolution of the respective ion’s spin states, which
simplify significantly the experimental procedure.

Tuning the trap frequencies over the broad range, the force
sensing methods proposed here can be employed to imple-
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ment a spectrum analyzer for ultra-low voltages. Moreover,
because in the force-field direction sensing the mutual ra-
tio can be additionally estimated our method can be used to
implement a two-channel vector spectrum analyzer. Finally,
the realization of the proposed force sensing protocols are
not restricted only to trapped ions but could be implemented
with other quantum optical setups such as cavity-QED [33] or
circuit-QED systems [34].

Appendix A: Elimination of the vibrational degree of freedom

Let us make the canonical transformation of Hamiltonian
Ĥ = Ĥ0+ Ĥint,

Ĥeff = e−ŜĤeŜ= Ĥ0+ Ĥint +[Ĥ0, Ŝ]+ [Ĥint, Ŝ]

+ 1
2[[Ĥ0, Ŝ], Ŝ]+

1
2[[Ĥint, Ŝ], Ŝ]+ . . . . (A1)

Our goal is to choosêS in a such a way that all terms of order
g in Ĥeff are canceled and the first term describing the spin-
boson interaction is of orderg2/ω . If we determineŜby the
condition

Ĥint +[Ĥ0, Ŝ] = 0, (A2)

then the effective Hamiltonian becomes

Ĥeff ≈ Ĥ0+
1
2[Ĥint, Ŝ]. (A3)

Let us consider the time-dependent operatorŜ(t) =

eiĤ0t/h̄Ŝe−iĤ0t/h̄, which obeys the Heisenberg equation

ih̄ ˙̂S(t) = [Ŝ(t), Ĥ0]. Using Eq. (A2) we arrive at the equation

ih̄ ˙̂S(t) = Ĥint(t), (A4)

whereĤint(t) = eiĤ0t/h̄Ĥinte−iĤ0t/h̄. Solving Eq. (A4) we de-
termine the desired operatorŜ.

1. Jaynes-Cummings model

We identify Ĥ0 = h̄ω â†â and Ĥint = h̄g(σ−â† + σ+â) +
zaxF

2 (â†+ â). Using Eq. (A4) we obtain

Ŝ=
g
ω
(σ+â−σ−â†)+

zaxF
2h̄ω

(â− â†), (A5)

which fulfills the condition (A2). For the effective Hamilto-
nian we derive

Ĥeff = h̄ω â†â+ h̄

(
∆− g2

2ω

)
σz− h̄ΩF σx

− h̄g2

ω
σzâ

†â− h̄g2

2ω
− z2

axF
2

4h̄ω
+ Ĥ ′, (A6)

where ΩF = gzaxF/2h̄ω is the Rabi frequency and̂H ′ =
1
3[[Ĥint, Ŝ], Ŝ]+ . . . contains the higher-order terms in (A1). We

find

1
3
[[Ĥint, Ŝ], Ŝ] =

2g2zaxF
3ω2 σz(â

†+ â)− 4h̄g3

3ω2 (σ
−â†+σ+â)

−4h̄g3

3ω2 (σ
−â†â†â+σ+â†ââ). (A7)

As long asg/ω ≪ 1 the higher-order terms can be neglected
and thus the lowest-order effective Hamiltonian is given by
Eq. (4a).

2. Quantum Rabi Model

Here the interaction Hamiltonian iŝHint = h̄gσx(â†+ â)+
zaxF

2 (â†+ â) and the canonical transformation is given by the
operator

Ŝ=
g
ω

σx(â− â†)+
zaxF
2h̄ω

(â− â†). (A8)

The effective Hamiltonian is

Ĥeff = h̄ω â†â−2h̄ΩFσx−
h̄g2

ω
− (zaxF)2

4h̄ω
. (A9)

Remarkably, due to the equality[[Ĥint, Ŝ], Ŝ] = 0 all higher-
order terms in Eq. (A1) vanish.

3. Jahn-Teller Model

Following the same procedure we have

Ĥ0 = h̄ω(â†
xâx+ â†

yây),

Ĥint = h̄gσx(â
†
x + âx)+ h̄gσy(ây+ ây)+

ztFx

2
(â†

x + âx)

+
ztFy

2
(â†

y + ây). (A10)

In this case the canonical transformation is represented bythe
operator

Ŝ =
g
ω

σx(âx− â†
x)+

g
ω

σy(ây− â†
y)+

ztFx

2h̄ω
(âx− â†

x)

+
ztFy

2h̄ω
(ây− â†

y). (A11)

Using Eq. (A11) we obtain the following effective Hamilto-
nian

Ĥeff = h̄ω(â†
xâx+ â†

yây)− h̄Ωxσx− h̄Ωyσy−2i
h̄g2

ω

×σz(âxâ
†
y − â†

xây)−
2h̄g2

ω
− z2

t |~F⊥|2
4h̄ω

+ Ĥ ′,(A12)

whereΩx,y = gztFx,y/h̄ω are the respective Rabi driving fre-
quencies. The next higher-order terms inĤ ′ (A12) are given
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by

1
3
[[Ĥint, Ŝ], Ŝ] = 2i

g2ztFx

ω2 σz(â
†
y − ây)−2i

g2ztFy

ω2 σz(â
†
x − âx)

−4h̄g3

ω2 σy{(â†
y + ây)(1+2n̂x)−2â†2

x ây

−2â2
xâ†

y}−
4h̄g3

ω2 σx{(â†
x + âx)(1+2n̂y)

−2â†2
y âx−2â2

yâ
†
x}. (A13)
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