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Observation of the Kibble–Zurek scaling law
for defect formation in ion crystals
S. Ulm1, J. Ropnagel1, G. Jacob1, C. Degünther1, S.T. Dawkins1, U.G. Poschinger1, R. Nigmatullin2,3,

A. Retzker4, M.B. Plenio2,3, F. Schmidt-Kaler1 & K. Singer1

Traversal of a symmetry-breaking phase transition at finite rates can lead to causally sepa-

rated regions with incompatible symmetries and the formation of defects at their boundaries,

which has a crucial role in quantum and statistical mechanics, cosmology and condensed

matter physics. This mechanism is conjectured to follow universal scaling laws prescribed by

the Kibble–Zurek mechanism. Here we determine the scaling law for defect formation in a

crystal of 16 laser-cooled trapped ions, which are conducive to the precise control of struc-

tural phases and the detection of defects. The experiment reveals an exponential scaling of

defect formation gb, where g is the rate of traversal of the critical point and b¼ 2.68±0.06.

This supports the prediction of b¼8/3E2.67 for finite inhomogeneous systems. Our result

demonstrates that the scaling laws also apply in the mesoscopic regime and emphasizes the

potential for further tests of non-equilibrium thermodynamics with ion crystals.
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T
he Kibble–Zurek mechanism (KZM) applies to non-
equilibrium systems traversing a second-order phase
transition. Before the phase transition, fluctuations relax

into the lowest energy equilibrium state under the dissipative
influence of a cooling mechanism. The characteristic time of this
relaxation increases near a structural phase transition and
diverges at the critical point. Therefore, there is no finite rate at
which the critical point can be traversed adiabatically and the
structure of the system is effectively frozen before it reaches the
critical point. Furthermore, different regions of the system can be
causally disconnected owing to a finite propagation speed of
perturbations, allowing for multiple nucleation sites of the
symmetry-broken ground states. If the choice of symmetries of
neighbouring sections is incompatible, defects form where the
phase boundaries meet and the system is thus prevented from
reaching a global ground state.

The KZM was first proposed by Kibble1,2 to describe the
occurrence of topological defects in the early universe. Later,
Zurek3 generalized this theory to condensed matter physics,
making this mechanism accessible in laboratories. Experimental
work on liquid crystals4 and liquid 4He (refs 5–7) has provided
confirmation of the KZM in a homogeneous setting. Recent
theoretical studies8–12 have triggered further interest in these
scaling laws in other settings, such as inhomogeneous ion crystals
confined in a linear Paul trap.

For such an inhomogeneous system, different regions reach the
critical point at different moments and lead to time-dependent
phase boundaries. This gives rise to an adiabatic transition if the
propagation speed of perturbations vs exceeds the propagation
speed of the phase boundary vp, thus allowing for the causal
connection of different domains and preventing the formation of
defects. Hence, defects may only be created in a region of the
system where vp4vs.

Laser-cooled Coulomb crystals in ion traps feature the
possibility of tunable spatial inhomogeneities. In addition, this
finite-sized mesoscopic system is accessible under highly
controlled experimental conditions, which permits the observa-
tion of the KZM without initial defects13 or impurities. Moreover,
our set-up features relevant control parameters that can be tuned
over a wide range, ideal for the study of non-equilibrium
statistical mechanics.

In this work, we investigate the KZM in the structural phase
transition of an ion crystal from the linear to the zig-zag
configuration14,15. The structure of localized ions in a linear Paul
trap is controlled by the confining electrostatic potentials along
the length of the crystal (axial) and the dynamic radiofrequency
potential in the perpendicular (radial) directions, which gives rise
to an effective harmonic potential in all three dimensions. The
combination of the Coulomb repulsion between ions and the
dissipative forces of laser cooling yields a crystalline structure
with minimum potential energy. For low-axial-trapping
frequencies, this structure is a linear chain. When the strength
of the axial confinement is increased beyond a critical value, the
structure is squeezed into the radial dimensions and undergoes a
structural phase transition. In the case of a radially anisotropic
trap potential, the linear crystal transforms into a planar zig-zag
configuration, which can be described by a second-order phase
transition8. The latter phase can take the form of two symmetry-
broken ground states, referred to as ‘zig-zag’ and ‘zag-zig’
configurations. Here we generate a harmonic axial potential
such that the phase transition initiates at the centre where the ion
density is the highest. The phase boundary then propagates
outwards towards the ends with a finite propagation speed vp. If
the curvature of the trapping potential is rapidly increased, vp can
exceed the speed of sound vs and defects may be created16,17.
Defects manifest themselves as kinks in the zig-zag structure of

the crystal. The positions of the individual ions are determined by
fluorescence imaging, revealing the final configuration of the
crystal. This allows for the determination of the defect-formation
rate d as a function of the rate at which the critical point is
traversed. By solving the time-dependent Ginzburg–Landau
equation in the underdamped regime18, a universal power law
for the density of defects with respect to the rate of change of the
control parameter, which is realized by the derivative of the trap
frequency at the critical point g¼ do/dt|CP, can be derived. If the
lengths of causally connected regions are small compared with
those of system size, a scaling of the defect-formation rate dpgb
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Figure 1 | Schematic of the X-shaped segmented linear Paul trap. The

cooling laser is oriented along the direction of the blue arrow. The end-cap

voltages are controlled by an AFG. The field-programmable-gate-array

(FPGA) controls the segment voltages and the triggering of the

experimental sequence.
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Figure 2 | Fluorescence images of a 16-ion-crystal during the

measurement of the KZM. (a) Linear ion crystal before ramping the axial

potential; (b,c) zig-zag/zag-zig configuration after the ramp; (d,e)

appearance of single defects, which connect incompatible orientations of

the crystal; and (f) double defects within the crystalline structure. The red

line clarifies the configuration of the crystals. The width of one pixel

corresponds to 1.7mm.
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with b¼ 4/3 is predicted10,11. Previous work has asserted that a
further doubling of the exponent occurs19 when the system size is
comparable to the size of these causally connected regions, which
leads to b¼ 8/3E2.67. Our experiment with 16 laser-cooled ions
is performed in this regime showing a scaling exponent of
b¼ 2.68±0.06 and b¼ 2.62±0.15 for two different radial
anisotropies, confirming the theoretical prediction. Our findings
are reproduced by numerical simulations.

Results
Scaling law. To determine the scaling law of the defect-formation
rate, we loaded 16 40Ca ions into a linear segmented Paul trap
(see Fig. 1) realizing a linear ion crystal (Fig. 2a). Doppler cooling
close to saturation was applied during the whole experimental
cycle. We ramped the axial trap frequency from 167 to 344 kHz
(see Fig. 3 and Methods) across the critical point at 201.7 kHz,
which led to a change of the crystal structure into a ‘zig-zag’
(Fig. 2b) or ‘zag-zig’ (Fig. 2c) configuration. The voltage ramp was
driven with an arbitrary function generator (AFG), which
we used to generate an output with the functional form
V(t)p[1þ exp(� (t� t0)/t))]� 1. This voltage was created at

different rates with time constants t ranging from 0.5 to 4.0 ms.
An image of the crystal configuration was captured 100 ms after
the ramp with a 10-ms-exposure time and the number of kinks
(Fig. 2d–f) was counted via image analysis (see Methods).
The measured defect-formation rate as a function of the rate of
change of the axial trapping frequency g¼ (doax/dt)|CP is
presented in Fig. 4 (dots). The predicted scaling law for the
inhomogeneous finite-sized system was confirmed by the obser-
vation of a scaling exponent of b¼ 2.68±0.06, matching the
prediction of b¼ 8/3E2.67.

Effect of radial anisotropy. Owing to the anisotropy of the radial
potential, the zig-zag phase is a planar crystal oriented in the
plane of the weaker radial confinement. As shown in Fig. 4, we
have measured the defect density for two different radial aniso-
tropies. With an anisotropy of ox/oy¼ 1.03, the observed defect
densities are depicted as circles in Fig. 4. For a small increase in
anisotropy to ox/oy¼ 1.05, the measured defect density is
decreased by B50% (see squares in Fig. 4), but the scaling
observed, b¼ 2.62±0.15 (Fig. 4), remains in agreement with the
predicted value.
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Figure 3 | Voltage ramp and corresponding crystal configuration. (a) Measured voltage (left y axis) applied to the end-caps by the AFG (black line).

A rounded shape of the waveform is chosen (red line) to avoid excessive excitation of axial vibrations. The timescale parameter t determines the

rate of change of the control parameter g at the critical point. The dashed line shows the separation between the two structural phases at an axial

trap frequency of oax/(2p)¼ 201.7 kHz and a radial trap frequency of orad/(2p)¼ 1394.1 kHz. Inset: dependence of the trap frequency oax/(2p) on the

applied end-cap voltage. A square-root function fits the measured data (red line). From this measurement, the functional dependency of the trap frequency

on time, and thus the rate of change of the axial frequency at the critical point is deduced by combining the functional dependence of the axial trap

frequency as a function of the voltage at the endcaps with the measured ramp curve. The corresponding trap frequency can be obtained from the right axis.

The scaling is obtained by combining the functional dependence of the axial trap frequency as a function of the voltage at the end-caps. (b) Axial positions

of the 16 ions during the ramp as extracted from simulation results. Diamonds indicate the onset, if any, of the local phase transition for each ion,

which are reached at different times because of the inhomogeneous charge density. The dashed line indicates the time when the middle ions reach the

critical point. The corresponding crystal configuration is shown before and after the ramp.
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Discussion
The influence of the crystalline structure on the dynamics and
stability of defects can be described by the Peierls–Nabarro
potential20. In our case, we have an attractive Peierls–Nabarro
potential, with the defects trapped at the axial potential
minimum, which is at the point of the highest charge density.
This is based on the fact that we choose a low radial anisotropy
such that, if defects form, they extend into the third dimension21

and are likely to be axially confined. For a small increase in
anisotropy, this confinement is significantly reduced and thus the
defect density is also diminished. With a shallower Peierls–
Nabarro potential, the thermal excitation of the ion crystal results
in a higher loss rate of defects, because they migrate to the end of
the crystal and vanish. This does not change the scaling behaviour
because this loss channel acts as a multiplicative factor, and thus
shifts the curve in the vertical direction but does not influence the
scaling exponent.

The experimentally determined scaling of defect formation is
supported by molecular dynamics (MD) simulations of ion
trajectories during a ramp (see Methods). A realistic model of

the trap is employed and the equations of motion are solved with a
partitioned Runge–Kutta integrator22,23. Laser cooling is modelled
by a Langevin force and a constant dissipation. The simulations
reveal the dynamics of the ions on a fast timescale that is not
accessible in the experiment and thus assist the experimental
design and the interpretation of results. By monitoring the
trajectory of each individual ion, we verified that no swapping of
ions, and therefore no melting of the crystal, occurs during the
ramping procedure. We also ensured that the excitation of axial
oscillations is minimized (see Fig. 3) by choosing an optimized
voltage ramp for squeezing the linear ion crystal over the phase
transition. The simulation of the scaling behaviour is performed
over the same range of critical parameters used in the experiment.
The blue stars in Fig. 4 show the simulation results with a scaling
exponent of b¼ 2.53±0.23, confirming the theoretical expecta-
tion. It is noteworthy that the simulation result is shifted below the
experimental data by around 5%, which corresponds to the defect
generation rate due to background gas collisions.

In conclusion, we have observed the KZM in a model system
with close-to ideal preparation, control and read-out capabilities.
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Figure 4 | Defect-formation rates. Double-logarithmic plot of the measured density of defects d versus the rate of change g of the axial trap frequency at

the critical point. All circles correspond to 60,000 measurements at a trap anisotropy of 1.03. The fitted function of the form dpgb (red line) gives an

exponent of b¼ 2.68±0.06, which is in excellent agreement with the prediction of b¼ 8/3E2.67. The constant offset visible at lower ramping rates stems

from background gas collisions at a base pressure of 1� 10� 9mbar. This is supported by the observation that the background rate is directly proportional

to the measurement time. The saturation is due to the maximum number of defects being limited by the system size. For comparison, the rate of defects

measured with a higher trap anisotropy of 1.05 is plotted (squares), showing 50% loss of defects but a similar fitted exponent of b¼ 2.62±0.15 (dotted

line). Solid data points are used for the fits. The uncertainty in g is deduced from the scatter of repeated recordings of voltage ramps, whereas the

uncertainty in d is the s.d. of the measurements. The blue stars depict the result of MD simulations (see Methods for details).
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The observed scaling of the defect-formation rate for two
different experimental conditions is in excellent agreement with
the theoretical prediction. Realistic simulations show detailed
agreement to experimental data also confirming the theoretical
scaling exponent. In future experiments, we might utilize the trap
control voltages to modify the local charge density and explore
the role spatial inhomogeneities have in defect formation, thus
investigating the crossover between the inhomogeneous and
homogeneous KZM. Increasing the number of ions may allow
access to the inhomogeneous KZM for large system sizes10.
Instead of external trap potential ramps, spin-dependent forces
could be used to initiate structural phase transitions and quantum
quenches24. Ultimately, it might be possible to cool the system
deeper into the quantum regime to explore quantum statistical
mechanics where phase transitions are driven by quantum rather
than thermal fluctuations25–29. This would require all relevant
vibrational modes of the linear ion crystal to be cooled near to the
ground state, for example, by employing electromagnetically
induced transparency cooling30. In addition, by the use of
sideband spectroscopy, defects in the zig-zag crystal could be
detected directly after the phase transition by their specific
eigenmode, which is separated in the frequency domain from the
modes of the regular crystal21.

During the preparation of this manuscript, we became aware of
similar results presented in another paper31.

Methods
Segmented linear Paul trap. The experiments are performed in an X-shaped
micro-fabricated segmented Paul trap based on four gold-coated laser-cut alumina
chips, each with 11 electrodes (see Figs. 1 and 5) with a thickness of 125 mm. The
segment width is 200 mm with isolating gaps of 30mm. The radial distance of the
segmented electrodes to the center of the trap measures 960 mm, whereas the length
of the whole trap is 2.9mm. The radial confinement is generated by applying a
radiofrequency voltage of B450Vpp at a drive frequency of O/(2p)¼ 22MHz,
resulting in a relevant radial trap frequency of orad/(2p)¼ 1.4MHz. The axial
potential is generated by a superposition of static potentials applied to these seg-
mented electrodes and variable voltages applied to the conical end-cap electrodes
allowing for axial frequencies (oax/(2p)) within a range of 167–344 kHz. The base
pressure in the vacuum chamber is 1� 10� 9mbar. Optical detection is achieved
using an electron-multiplying charge-coupled device camera with a 10-ms-expo-
sure time, oriented at 45� to the planar structure of the crystal. The camera has an
optical chip with 128� 128 pixels and a pixel size of 24� 24mm2. An objective lens
leads to an effective pixel size in the acquired images of 1.7 mm.

Experimental sequence and set-up. To allow for high statistics and a large
number of data points in maintainable time, a high repetition rate of the whole
experimental sequence was ensured by implementing a fully automated real-time
experimental control system. A field-programmable-gate-array controls the timing
of the lasers, the electron-multiplying charge-coupled device camera and the AFG
(see Fig. 6), which has 16-bit amplitude resolution at a sample rate of 200Msamples
per second for fast and glitch-free voltage ramps with variable time constants32,33.
The experimental sequence (Fig. 6) starts with the loading of ions. For this purpose,
Ca atoms in a thermal atom beam cross the centre of the trap and are ionized with
resonantly enhanced two-photon ionization at wavelengths of 423 and 375 nm.

The cloud of trapped ions is Doppler-cooled by laser radiation red detuned to
the cycling dipole transition 2S1/222P1/2, leading to a condensation of the ions
into a linear crystal. To drive the cooling transition, we use a diode laser near
397 nm with a power of 0.15mW and a beam direction that has a projection on all
three trap axes. The cooling laser is switched on during the whole sequence of the
experiment, and the resonance fluorescence is used for the image acquisition.

Ion losses can occur because of background gas collisions and possible losses
during the relaxation ramp. With the fully automated sequence, we reach a
repetition rate of one experiment per second. To achieve automated control, a first
image is taken and the number of ions in the chain is evaluated. If the count is lower
than 16, another pulse of the ionization lasers increases the number of ions. In the
case where the number of ions is higher than 16, the axial trapping potential is
temporarily lowered to reduce the ion number. Only if the number of ions in the
chain is exactly 16, does the sequence continue with the ramp of the axial confining
potential. The field-programmable-gate-array then triggers the AFG, which controls
the ramp of the voltage at the endcaps and thus increases the axial trap frequency.

Because of noise on external signal filters, we observe a temporal jitter of the
start of the voltage ramp of about 80 ms. To guarantee that the images are taken
after the ramp, the image acquisition exposure of 10ms starts with a delay of
100 ms. Subsequent to the ramp and the image acquisition, the axial potential is
ramped back slowly to the initial value, such that the crystal relaxes again into a
linear configuration. Another image is taken to verify the number of ions. If the
number still equals 16, the ramping sequence is started again. Otherwise, the
sequence continues with reloading.

Evaluation of the defect density. To guarantee an efficient detection of defects
and reliable categorization of the images into different classes of possible crystal
structures, their normalized two-dimensional discrete Fourier transforms were
calculated and compared with 14 reference images (Fig. 7). Such reference images
were generated by averaging the manually selected samples for a total of 14 relevant
configurations. The coefficient of determination R2 (ref. 34) was then used to
classify the images into 15 classes corresponding to the 14 template images and 1
class for images that did not fulfil a matching threshold, containing blurred images
and images where the amount of ions did not match 16. This recognition threshold
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Figure 6 | Experimental sequence. The sequence consists of automatic preparation of a linear ion crystal consisting of 16 ions. Immediately before

starting the ramping of the electrode voltages, an image is taken with an exposure time of 10ms. The image acquisition time amounts to 20ms. Directly

after the voltage ramp of typically 340ms, another picture was taken. The experiment is then repeated by ramping down and conditional reloading
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Figure 5 | Photograph of the segmented ion trap with gold-coated
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direct current (DC) electrode with voltage supplies for the individual

segments. On the top an radio frequency (RF) electrode is shown,

segmented for symmetry reasons. The angle of view corresponds to the

direction of the cooling laser beam.
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was applied to the coefficients of determination to reject the low-quality images
(o5%). The density of defects was calculated as d¼ (n1þ 2n2)/N, where n1 is the
number of single-kink images, n2 is the number of double-kink images and N is the
total number of images, not including those rejected.

Long-term defect stability. To estimate the stability of the crystal structure during
the fluorescence detection, we repeatedly imaged the ions in the final potential. A
blurred image indicated that the configuration changed during the exposure because
of the loss of a defect or some other event, such as a background gas collision. For
each of a range of exposure times from 10 to 1800ms, 4500 images were captured.
The proportion of non-blurred images decreased exponentially with the exposure
time, revealing a time constant of t¼ (800±140)ms, the uncertainty being calculated
assuming a binomial distribution for the two possible outcomes (blurred or non-
blurred), combined with an error due to the sorting algorithm. This indicates that,
in the 10-ms time required for imaging, the probability of a change to the crystal
structure, including the loss of a defect, is less than a few percent.

MD simulations. To exclude the possibility of the crystal melting and vibrational
excitation, which would lead to a modified scaling behaviour, we simulated the
dynamics of the ions during the experiment using MD Monte–Carlo simulations
with a fourth-order Runge–Kutta integrator performed on the bwGRiD computer
cluster (http://www.bw-grid.de). In the simulations, the system of ions was first
initialized in a linear configuration at a specific temperature T, followed by the
evaluation of the dynamics during the potential ramp.

To generate an ion chain at a specific temperature T, we used a Langevin
thermostat MD calculation. The ions were assumed to obey the Langevin equation of
motion.

m€rj þ Z_rj þrjV ¼ xj tð Þ ð1Þ

where rj¼ (xj,yj,zj) is the coordinate of the jth ion, m is the mass of each ion, V is the
energy potential of the ion chain, Z is the friction force and xj is the stochastic force
satisfying the following ensemble average relations

hxj tð Þi ¼ 0 ð2Þ

hxj tð Þxkðt0Þi ¼ 2ZkBTdjkdðt� t0Þ ð3Þ
The ponderomotive approximation for the potential energy is used:
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Initializing the system of 16 Caþ ions with the starting conditions of the
experiment results in a linear chain of ions at rest. Evolving the system using
equation (1) then leads to a chain of ions at a specific temperature T, corresponding
to the Doppler-cooled ion chain in the experiment. Numerical evaluation was
carried out using the Langevin impulse method35. We have verified the
thermalization of the system by checking that the equipartition theorem is satisfied,
that is, h

P
j mv2j i ¼ 3NkBT , where vj is the speed of the jth ion.

Once the system is thermalized, we evaluated the dynamics of the squeezed
system by numerically solving the equations of motion with a time-dependent
trapping potential that matches the experiment. The electric potential, which

depends on the electrode geometry, was modelled with a fast multipole boundary
element electric field solver. Care was taken that experimental trap frequencies are
reproduced. The measured voltage ramps were fitted and the obtained values of the
parameters were fed to the simulation programme such that the simulated
conditions are as close as possible to the experimental realization. The motion of
the system can be described by either Langevin equations or Newton’s equations.
We have checked that both Newton’s equations and Langevin equations lead to the
same statistics of created defects. This is because of the fact that during the quench,
the stochastic thermal fluctuations are much smaller than the energy change due to
the potential ramp. The simulations were carried out using a friction coefficient of
Z¼ 4.0� 10� 21 kg s� 1 and a Doppler temperature of T¼ 25mK, corresponding
to the experimental conditions. The integration step size was 2� 20/ozi¼ 0.895ps
with ozi the initial axial trap frequency. Around 3,000 simulated experiments were
used for each data point (Fig. 4, blue stars).
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