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Single ions held in linear Paul traps are promising candgl&r a future quantum computer. Here, we
discuss a two-layer microstructured segmented linearrggn fThe radial and axial potentials are obtained
from numeric field simulations and the geometry of the trapgsmized. As the trap electrodes are seg-
mented in the axial direction, the trap allows the transpbitns between different spatial regions. Starting
with realistic numerically obtained axial potentials, wgtimize the transport of an ion such that the mo-
tional degrees of freedom are not excited, even though émsport speed far exceeds the adiabatic regime.
In our optimization we achieve a transport within roughlytescillation periods in the axial trap potential
compared to typical adiabatic transports that take of tdet@ oscillations. Furthermore heating due to
guantum mechanical effects is estimated and suppressairgies are proposed.
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2 Optimization of segmented linear Paul traps and transgatored particles

1 Introduction

With a series of spectacular experiments the ion trap basadtgm computing has proven its prominent
position for a future quantum computer among the list of adaues [1]. Starting with two-qubit gate
operations[Z2.13], long lived two-qubit entangleméni 46} teleportation experimenis |4, 8], and different
sorts of multi-qubit entangled statés$[[9] 10,4, 11], therddor qubit-entanglementis currently presented
in a 6-qubit cat state and a 8-qubit W-stdtel [12, 13]. Futomerovement is expected using the technique
of segmented linear Paul traps which allow to shuttle ioamfa “processor” unit to a “memory” section
[L4]. In such a quantum computer, strategies of quantunm earection will be critical for the successful
operation. However, as a result, many additional ancillaitglare required and a large fraction of the
computational time will be consumed by shuttling ions bewdifferent segments. Detailed simulations
[L5] show that as much as %9of the operating time would be spent with the transportgtimtesses. The
time required for the transport should be reduced such lieagjate times are improved and decoherence
processes are reduced.

Thus, we assume that the improvement of these transporgses is necessary. In recent experiments
[12,[16], the shuttling has been carried out within the aali@dimit, such that the time required for the
transport by far exceeds the oscillation time of the ion | plotential. It is a common misbelief that this
adiabatic transport is necessary to avoid the excitationtwhtional quanta. In this spirit, we investigate
in this paper the optimization of fast and non-adiabatiegportation by applying classical optimal control
theory. Our simulations allow to predict the time sequeniceomtrol voltages such that ion heating is
suppressed.

Certainly, non-optimized fast transport of qubit ions itii@ processor unit followed by sympathetic
cooling of a differention species [11I7,118] would be an alédive strategy. However, the necessary cooling
time would render the overall computational time even slowirst experiments show that the qubit
coherence is maintained during a transport, but that thatidnal quantum state may typically not be well
conserved after a fast shuttle of the ions. This impedebduubit operations.

In the first section of this paper we start by numeric cal¢oitet of the electric trapping potential for
ions and show how to optimize the geometry of a two-layer asttuctured segmented trap [L9] 20]. The
same techniques may be applied for the optimization of plamatraps [21[ 22, 23, 24]. In the second
section we optimize the transport of a single ion between egions and illustrate the application of
optimal control theoryl[25]. Even though shuttling is fasg can show that an optimized non-adiabatic
transport does not lead to significant heating.

2 Optimization of a two-layer microstructured ion trap

The idea of segmented linear Paul traps has been proposedlizera scalable quantum computier [26,
214,[14]. Typically, these trap structures are fabricatetbbetched semiconductor structursi[20] or gold
plated insulators structured by microfabrication teche®)[28]. Segmented traps come in various shapes
and can be categorized by the number of electrode layersrigrtime trapping potential: Planar traps with
one layer only, two-layer traps that are composed of two osicuctured planar chips and traps with a
higher number of electrode layers. In our discussion, wéfadlus on the two-layer geometry which is
shown in Fig[l. To illustrate the methods of fabricationg.lE gives an SEM picture of a gold plated
laser cut alumina wafer. Here, with fs-laser ablatior [289% cuts are clean and show a spatial resolution
of about im. The DC-electrodes may be cut in form of “fingers” to reduee insulating surface seen
directly from the ion position. This reduces the influencehs possibly charged surfaces to the trap
potential and has also been shown to reduce heating effettte @mn motion. Two structured wafers are
assembled to form a two-layer trap geometry as shown ifFig. 1
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radial: axial:

Fig. 1 Scheme of a two-layer micro structured segmented linepr frhe two electrode layers have a thickneasd

are separated by the distancelhe length of the trapping electrodesisthe radio frequency electrodes (RF) and the
segmented electrodes (DC) are separated on each layer bgplpgradial direction). The RF voltage is applied on
two continuous electrodes (black) and the static voltagespplied on the segmented DC electrodes (gray). The DC
electrode segments have the lengtand are separated by a gap The symmetry axis is later denoted as the x- or
axial direction.

2.1 Design objectives

What are the optimal dimensions and aspect ratios in sucbratrap structure? What are the optimal
electric trap parameters?

Radial configuration At first, we aim for a high secular trap frequenay/ 2, such that there is a tight
dynamical confinement of the ions within the Lamb-Dicke negi The confinement should typically reach
frequencies of several MHz in the radial direction. The isgpiradial frequencies should be achieved with
moderate voltages on the electrodes of several hundretds Vhlerefore, the RF trap drive may not exceed
the break-through voltage - a limitation which plays a digant role in the case of very small traps
[20,[27].

A second aspect is the anharmonicity of the radial trappotgmial. From the fact that linear traps with
optimized electrode shapes have been shown to load largeatswf ions[[30], we would try to improve
the loading rate by reducing non-harmonic contributionth® potential. Especially for larger g-values
when the trap drive power is chosen relatively high, noedinresonances have been observed [31]. This
confirms that even small anharmonicities are relevant icétse of large crystals.

Axial configuration In order to maintain the linear appearance of the ion crgsthé axial trap frequen-
cies have to be lower than the radial frequency. Neverthetes axial frequencies,/2m should exceed
a few MHz. Then, cooling techniques are simpler [32], gaterapons may be driven faster, and a faster

Fig. 2 Detail view on the trap chip, /a/m gold
plated alumina of 12&m width cut by a fs-pulsed
Ti:Sapphire laser. The scanning electron microscope
picture shows several DC electrode segments of a sin-
gle layer.
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4 Optimization of segmented linear Paul traps and transgatored particles
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adiabatic transport of ions between segments may be achiéwe transport between axial segments re-
quires a fast temporal change of the trap control voltagedb®@worder of severals. This is accomplished
by controlling the DC-electrode voltages by means of fagitali-to-analog converters (DAC) and would
be technically much more involved for high voltades.

Furthermore, single ions will have to be split off and mergedon strings throughout the operation
of a segmented ion trap quantum computer. The investigafieplitting and merging operations is not
within the scope of this pap€r B3], however, it was pointatitbat a highly non-harmonic axial potential
improves this situatiori [34]; it implies certain geomediticatios in the axial trap construction.

2.2 Operating mode and modeling of the segmented lineartRqul

Linear Paul traps are characterized by a two-dimensionaaahycal confinement in the radial direction
(yz plane) and a static confinement in the axial directioraxis). The applied radio frequency: /27 to
the RF electrodes (see Hib.1) generates a dynamical elpctiéntialgrq(y, 2, t) which leads to a strong
confinement of single ions along the axial direction at thdiadrequency node. Typically, the axial
potential¢ax(x,t) formed by the quasistatic voltages applied to the segmed@electrodes is weaker

1 Therefore the geometry should also take into account thigekhvoltage range of the DACs.
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Fig. 4 a) Numerical simulation of the trap stiffness in radial direction as a function of the slit widtgh For a slit
width of 126um we estimate a value of 58 m ™2 which corresponds to a radial frequency.efs/2m = 5SMHz. b)
Dependence of the fourth order parameteto the slit widthg. The dashed line near 1261 indicates the optimization
result. c) The normalized hexapole coefficiennormalized by the quadrupole coefficieatindicates the descreased
loss of the trap drive power.
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than the radial confinement to support a robust alignmerfi@fibear ion string. The shape of this axial
potential depends on the geometry of the segmented DC adiestr The time-dependent variation of the
DC control voltages allows to transport ions in the axiakdifon without micromotion. We separate the
numerical optimization of the linear Paul trap into a radiadl axial calculation - first, the radial geometry
configuration is optimized for strong confinement in the RiEecthen the axial electrode geometry is
calculated based on the radial geometry.

The lowest-order approximation of the dynamical trap ptétaq(y, 2, t) in radial direction is similar
to that of a quadrupole mass filter [35]. The geometric fagtatescribes the quadrupole potential strength
in both radial directions for a symmetric radial electroéemetry:

rad(y, z,t) = c2/2 (y2 - z2) (Udc + Uyt - cos(wre t)) Q)

An ion trajectory is described as a superposition of a hafmsecular motion at frequencysec =
wit/2 \/a + ¢?/2 (lowest order approximation) and the superposed micramadit the radio frequency
wif. The frequency of the secular motion is characterized bylitmensionless stability parameterandg
of the radial motion[[36] which depends on massand charge of the ion, the RF amplitud&\s applied
to the RF electrodes and the static voltaffgsapplied to the segmented electrodes of the trap:

- 4e Uge . 2e Uyt
a = 3 C2 q= 5 C2 (2)
m er m wrf

A two-dimensional domain of the stability parameterandq defines a region of stable trajectories as
solutions of the classical equations of mofiolm general, the electrode configurations result in an gtect
potential that may be expanded in spherical multipole camepts, where the quadrupole contributign
represents the dominating part for reasonable Paul trapetey; the hexapole contributian contributes
mainly to the non-harmonic part.

The quadrupole approximation of the confining potentiahiccurate if the electrode shapes deviate
strongly from the ideal hyperbolic form. As a result, anhanigities and coupling terms appear inside
the stability region[[31]. As the radio frequency voltagepationed to various higher order terms and
not only to the quadrupole contribution of the potential sslof the trap stiffness,ds observed (Fig. 4).
For simplicity we idealizd/4c as zero and characterize the anharmonicity of the pseuelojiltin radial
direction along the two radial principal axes, here dendsed radial coordinate(y, z), by the leading
terms of the following polynomial expansion:

Orad(r(y. 2), 1) o S e 1" 3)
n

Because of the radial electrode symmetry the odd-numberetst,, cs, ... are negligible and the
potential offsety is irrelevant. The optimization of the radial trap potehlgads to a suppression of the
higher order potential contribution, such that the hexapaime, as the leading non-harmonic contribution
is small.

Based on the geometry for an optimized radial confinementiti@ static trap potential along the
symmetry axisc can be analogously expanded,

dx(x,t) o Y dy 2, (4)

The axial potential properties are determined by the setgdeslectrode geometry, especially the axial
width of the individual electrode segments. An optimal &ganfinement of the ion requires a maximum
guadratic termi,. The transport of a single ion between axial segments itégel if the potentials from
adjacent segments exhibit a large overlap. For the sgjittiperation of an aligned two-ion crystal into
single ions in independent axial potentials, Steetra. [34] suggest a potential shape with a maximum
quartic termd, and minor quadratic contributiafy.

2 We discuss the optimization in the so-called lowest stghiégion includinga = 0 andg < 0.9
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6 Optimization of segmented linear Paul traps and transgatored particles

R Co wit /27 Uyt q Wrad/2T | wax/27 A
[um] | [1/m?] | [MHZ] V] [MHZz] [MHz] | [meV]

Aarhus|37] Mgt | 1750 | 1.6-10° 4.2 2-50...150 | 0.2...0.6 | 0.3..0.8 | <04 <10°

Innsbruckl33]| “°Cat | 800 | 3.9-105 | 23.5 700 0.6 5.0 1.0 103
Michigan [39] | ''2Cd* | 100 | 2.2-107 | 48.0 0.3 5.0 2.5

Simulation Ocat | 89 |5.3-107 | 50.0 120 0.3 5.0 2.5 300
Michigan [40] | 2Cd* | 30 | 4.7-10% | 15.9 8 0.6 43 1.0 80

Table 1 Trap design parameters of several types of linear ion trps:geometric trap siz& given by the minimal
distance between ion position and electrode surface, thdrgtic geometry factat. of the radial cross section de-
scribes the magnitude of the radial confinement at the gilemtrede voltage, the trap drive frequeney/2x together
with the trap drive voltagé/is and the RF stability parameterresults in the radial motional frequencyaq/27. For
comparison the axial motional frequeney/2x is shown. The trap depth summarizes the confinement of a single
ion.

Relevant parameters of various linear ion traps are surzethiin Table 1. The Aarhus hexapole design
with endcapslI37] and the Innsbruck blade desigih [38] shomaditional macroscopic approach of mm-
size linear trap design without segmentation of the corglettrodes. The Michigan trap designs, the
microstructured three-layer trap [39] and the semicormiueto-layer trapll40], represent the progress in
the miniaturization of linear ion traps and the segmentatibthe control electrodes for the transport of
single ions and the splitting of ion crystals.

2.3 Optimization of the radial potential

In the first step we optimize the radial confinement of the.tfidpe width of the slit is varied and the electric
potential is calculated, see FId. 3. The distance of the &yerk is fixed to the thickness of a commercial
alumina wafer (12bm) which acts as a spacer. Then a variable parameter is thie yvid the lateral laser
cut in the trap chips, respectively the distance betweeREhand the DC-electrodes of the trap chips. We
find that the radial confinement increases with decreasihwiglth ¢, see Fig[l. Interestingly, for this
geometry, the radial potential is almost harmonic sincefdlieth order parametet; is nearly vanishing.
For a width of 12Gim the radial frequency @faq/27 = 5 MHz is reached for a singly chargétCa™ ion
with a peak RF voltage of 120 at 50 MHz.

2.4 Optimization of the axial potential

The optimization of the axial potential determines the permiance of the fast ion transport. Additional
requirements are a deep axial potential even with moder@tedhtrol voltages and the capability of the
segments to split a two-ion crystal into two single ions pregbindependently in distinct potential minima.

In a first step we investigate the maximization of the axegbfirequencyayx as a function of the segment
width & and the cut widthh, see Fidll. The numerical three-dimensional electric mi@tesimulation
depicted in Fig[l6 shows the expected result: For a largewdgtithe segments the potential is expected to
be shallow, and for a very short width the electric poterfalié rapidly off from the electrode tips, such
that again a weak confinementis found. The maximum axialftesuency is reached for a segment width
kopt =~ 70 um, a gap between DC and RF electrgeel26:m and a cut width of.= 30um. Changing the
size of the segment width by %0results only in a 2% variation ofd, which is easily compensated by the
DC voltage.

The trapping of single ions and transport require a diffemactrode configuration. For the trans-
port problem, it is important that the potentials generdtgddjacent DC segments exhibit a large spatial
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Fig. 5 Numerical calculation of the axial electric potentigls, all cases (a) to (c) for the optimized radial slit width of
g = 126 pum. a) DC segments with a width &f= 90 xm and gaps between axial electrode& et 30 um resultin a
maximald. coefficient. The potential of the adjacent electrode istptbaind shows only partial overlap (dashed gray).
b) Optimized transport scheme: The DC electrodes are diviitte equal parts witlh =45um andh =15um. If both
electrodes are at the same voltage of 1V, the potential idynie@ntical to the optimized case (a). For transporting an
ion, the potential minimum is shifted by changing the vaéts§rom ..0/0/1/1/0/0.— ..0/0/0/1/1/0.. continuously. The
axial potentials exhibit a large overlap which improvesttla@sport of the ions. ¢) Simplified transport scheme: Axial
potential for DC segments with = 45 yum andh = 15 um. Now, only a single segment is at 1 V. For transporting
the voltages are changed from ..0/1/0/64....0/0/1/0/...

overlap (see Fidl]5). To achieve both ideal trapping andsfrart conditions we split each electrode into
two parts (b). For trapping we bias two neighboring eleaodith an equal voltage in order to obtain a
larger “effective” electrode. Due to the smaller segmeoitaa better overlap of the individual potentials
is provided during transport. As the ion is displaced duthegtransport process we expect that the anhar-
monic termsly, ds, . . . of the potential will cause heating, see SECil 3.5. Theeef@ have determined the
optimal effective segment width such that theterm is minimized. The results are shown in [Ep. 6.

In the following, we will use the simplified transport scheiné=ig.[d (c) with one start and one target
electrode only and investigate the necessary time depeadémoth DC segment control voltages.

3 Open loop control of ion transport

After the optimization of all geometric trap parameters wevriocus on the optimization of the time de-
pendent trap control voltages which are applied to the DGnsedgs in order to transport the ion: Our
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8 Optimization of segmented linear Paul traps and transgatored particles
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Fig. 6 a) Numerical simulation of the axial trap stiffnegsas a function of the segment widkhwith 4 =30um. b)
Dependence of the fourth order parameterthe dashed line near=160:m indicates the zero crossing.

goal will be to decrease the time required for the transgarbelow the limit of adiabaticity, such that
the transport is finished within a single oscillation permaly, with the constraint to avoid vibrational
excitation. To a good approximation the radial ion confinehtlwes not influence the axial transport be-
tween two segments as the ion is moving along the centraldtfe-with negligible micromotion. Note,
that our calculation takes into account two axial segmeutsrtay be adapted to a larger number of seg-
ments, see Fidl5 (c). The potential which we use for the dpéition of the ion transport is the result of
a boundary element calculation, see appehdix A. In ordemttsport the ion, the potential minimum is
shifted by changing the DC control voltagest). Intuitively, we estimate that a smooth acceleration and
a smooth deceleration of the ion is advantageous. Seartdintige precise shape of the segment control
non adiabatic heating due to fast transport has to be mieihiz

3.1 Non-adiabatic heating sources

For a transport duration approaching the timescale givethéyaxial trap frequency, the following non-
adiabatic effects are expected to occur:

1. Classical displacement error: The ion cannot adiabatically follow the potential minimundastarts
oscillating, such that it possesses excess energy aftdérahgport process. This behavior may be

understood classically. In the quantum picture it corresisao the buildup of a nonvanishing dis-
placementy during transport.

2. Wavepacket dispersion heating: With a spatial extension of about 10 to 20 nm, the undisplacace-
function hardly senses any anharmonicity in an electriepiil that is generated by 50 to 10én
sized electrode structures. However, during the tranghertvavepacket undergoes significant ex-
cursions of a fewum out of the minimum of the potential. Here, exposed to higirdrarmonici,
contributions, the shape of the ion wavepacket dispersahwasults in vibrational excitation.

3. Parametric heating: As the control voltages are changed, the harmonic frequerafythe instanta-
neous potential is temporarily varying. If the width of thawgpacket can not follow the variation of
w(t) adiabatically, parametric heating to higher vibratiortatess will occur.

3.2 Overview of the applied optimization strategies

In the following Sect[Z3]13 we minimize the classical disglaent error by applying the optimal control
method. For the optimization of this entirely classicabesource we need to optimize the ion’s classical
trajectory such that a cost function - weighting the ion'sspd space displacement after the transport - is
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minimized. The solution obtained by the optimal controlaithm does not show considerable heating by
wavepacket dispersion. However, we find a significant cbution of parametric heating. A first guess
would be to include an additional term in the cost functioptevent parametric heating, involving time
derivatives of the control fields.

As this approach fails due to implementational difficultie® suppress parametric heating by an ap-
propriate initial guess which keeps the trap frequencyqutlsf constant. This is achieved by a variable
transformation fromu; »(¢) to new parameters that allow to decouple the strength of ditenpial and its
minimum position. Starting now the optimal control methadelgs a solution that reduces the displacement
error. Since the control parameters are only slightly medikiy the optimization algorithm, the parametric
heating and also the wavepacket dispersion heating arigitdegl

We conclude that in our case, the choice of variables thaiuge the essential optimization parameters
[41,142] and a well suited initial guess function are helgfiudl maybe critical for the success of the optimal
control method.

3.3 The optimal control method

This section will give an introduction to optimal controleitry applied to single ion transport. We use
the method derived from a variational principle with unbded controls and fixed final tim&_[43]. We
consider the dynamics of a singly charged sirf§l@a’™ ion confined in a segmented linear Paul trap. We
assume that the ion is laser cooled to its motional grourte®startaining to the axial degree of freedom.
Neglecting the radial motion, the motional state of a trapipa is classically represented by a coordinate
vectoré(t) = (z,v)” in a two dimensional phase space.

The equation of motion under consideration of two uniforecalode segments with arbitrary voltages
applied on them, reads

v

5: a(E, {ui}) = ( Ly ), g > : (5)

ox

Here, the index runs over the two electrodes ai@x) are the normalized electrostatic potentials at
electrodei. Eqg. [B) then holds for arbitrary electrode voltages dudédinearity of the Laplace equation.
Our goal is now to find time-dependent control voltagg$) that move the ion from the center of electrode
1 to the center of electrode 2. We desire to have the ion aafeestthe transport process. The performance
of a given control field is judged by the cost function

W(E(ty) = a (a(ty) —ap)” + B olty)?, (6)

which is a measure of the phase space displacement at thérfiedl;. « and s weight the contributions
relative to each other. Taking E@l (5) as a constraint falirakst, we obtain the cost functional

&G wp= [T E & (€ tuh € ™

where we have introduced the costate ve€io« (z,, vp)T as a Lagrange multiplier in order to guarantee
that the optimization result obeys the equation of motion{d)y The time dependence of all variables has
been dropped in the notation. For an optimal control fiél,= 0 has to hold, therefore the variational
derivatives with respect to), fp and have to vanish. The derivative with respecfgdestores the equa-
tions of motion Eq.[{b) for the state vector, the derivativithwespect to{yields equations of motion for
the costate vector:

3 The calculation is valid also for thermal and coherent statigh modest excitation.
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10 Optimization of segmented linear Paul traps and trangpatored particles
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Vp = —Tp. (8)

Variation of J with respect to the control field leads to an additional atgebequation:

i 1 0Vi(z)
—_ :> _——
m

o U= 0. 9)

The boundary condition fafp is derived by variation with respect to the final state:

oh
ag ty
If we let the ion start at rest in the potential well pertamio the first electrode, the set of boundary
conditions for the state and costate vector reads

x(to) =0
’U(to) =0
ap(ty) =2 (x — xy)
vp(ty) =2 0. (11)
Egs. [B), [B) and(11) together withl (9) represent a systesoopled ordinary nonlinear differential
equations with split boundary conditions, i.e. for two of trariables, initial conditions are given whereas
for the other two, the values at the final time are specifieds Takes a straightforward numerical inte-

gration impossible. The system is therefore solved in anatitee manner by means of a gradient search
method. The scheme of this steepest descent algorithm ddlaws:

1. Choose an initial guess for the control fieldt).

2. Propagate andv fromt = t, to t = t; while usingu;(t) in the corresponding equations of motion.
At each time step, save the valueagt).
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3. Determiner,(t¢) andu,(ts) according to[(T1).

4. Propagate;, andv, backwards in time from = ¢; to ¢ = ¢,. At each time step, save the value of
vp ().

5. For each time step, update the control field according to

1L Vi)

ul® (t) = ud(t) + 1 v, o

(12)

6. Repeat steps 2 to 5 until the specified threshold fidelitgashed.

In Eq. (I2), the gradient search step widtlis simply chosen by trial and error. If it is too small, the
algorithm converges too slowly, if it is too large, the aligfom starts to oscillate. The values@fandg in
Eqg. [8) are determined based on experience. For the datanpeesin the following section, these values
area =10, = 1andr =5 - 1078, The algorithm converged after about 200 iterations.

3.4 Optimization results
For the initial guess the control field is chosen as follows:

Vo fort <0
u(t) = Vo sin®(L)  for0 <t <At
0 fort > At
) = o- a0 (3)

This provides on the one hand a smooth and symmetric actiefeand deceleration of the ion, on the
other hand the potential minimum exactly coincides withdksired positions at the initial and final times.
In principle, other initial guess voltages like GaussianKmcan be used as well. The reference voltage is
Vo = —0.1V, corresponding ta ~ 27 - 0.5 MHz in the initial and final potential wells. The switching
time is set taAt = 8.0us, the total time interval runs from 1.05 t0 9.0us.

3.5 lon heating due to anharmonic dispersion
Quantum mechanically we describe the system with a Hanéltooperator pertaining to a time-dependent
harmonic oscillator with an anharmonic perturbation:

Ho(t) = % + %@2(@ — 2o(t)? + k(1) (@ — o). (14)
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12 Optimization of segmented linear Paul traps and trangpatored particles

Fig. 9 Phase space trajectories in the frame
co-moving with the potential minimum. The
figure shows the trajectories pertaining to iter-
ations 0, 10, ..., 100. At iteration 100, the ion
arrives close to the origin. Note that the trajec-
tory tends to be symmetrized by the optimiza-
tion algorithm.

Velocity displacement in m/s

Position displacement in um

Without temporal variation ofv and the anharmonic pérof the potential, the solution of the time-
dependent Schrodinger equation is simply given by a cottestate|«(t)), where the displacement pa-
rametera(t) can be inferred from the classical trajectory. Anharmomspersion of a wavepacket occurs
at a timescale given b, /(An)? [44], with the revival time

2E,N\ "
Trev - 2h ( an ) (15)

and the spread over the vibrational levélss = «(¢). The shift of the energy level&,, induced by
the anharmonic contribution causes a finite dispersion &intecan be calculated in first order stationary
perturbation theory:

5 hPk(t)
We now define a generalized dispersion parameter
b An? 5h (Y k(t)]|a(t)]?
/to e " awn J, o7 )

If this parameter is sufficiently small, anharmonic disparsvill not contribute to heating.

3.6 Quantum mechanical estimate of non-adiabatic paranietating

We now check if the width of the wavepacket adiabaticalljdiwk the harmonic frequenay(t). The
adiabatic theorem states that if

1{dm (1) (1)) < |En(t) = Em ()] (18)

is fulfilled, transitions between eigenstates can be négded he parametric time dependence of the eigen-
states states in ER.118 is the implicit time dependence {fin We find the following nonvanishing matrix
elements:

(bniildn) = \/ﬁwnwﬂ—l
(Pnt2ln) = =V(n+1)n+2) (19)

4 In contrast tads, k(t) is given by expanding the potential around the instantasi@otential minimum.
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and similar expressions fer = n — 1, n — 2. Thus, parametric heating can be neglected if
32 W
n?? = <1 (20)

Numerical evaluation of the matrix elements yields the ltethat the adiabatic following condition is
fulfilled for n = 0, but is clearly violated for the high occurring for large excursion of the wavepacket,
for examplen ~ 2000 for Az = 1 um at a transport time of 10s, see Fid10.

3.7 Improved initial guess function and ultra-fast trarrgpo

We therefore have to refine our optimization strategy: As lparseen in Fig.[18), the control voltages
changes are symmetric, which indicates that one contraledegf freedom can be sacrificed in order to
keepw(t) constant. This is achieved as follows: The initial guessagss Eq.[[D3) are normalized to
a constantv before the optimization. The optimization process thenldet® variations inv(t) that are
negligibly small - typically leading to maximum values@fw? on the order ofi0~° such that according
to Eq.[2D) the adiabatic theorem is fulfilled even after tpémization algorithm has cured the classical
phase space displacement heating. This is in strong cotdréee unconstrained, previous guess function,
where we obtaim/w? ~ 10~2. It should be noted that parametric heating can be complstedpressed
as well for optimized control voltages. This can be achidwedhanging the set of control parameters to

10° T T T T T T3

10° 5

10° F 3

3 [ ]

= "F b/ 5
S 40 [ Parametric a) Final Displacement ]
% F Heating ]
g WF E
2 10° | a
(03] o ]
= - c) Dispersion 3
[ E 3
= i Loss ]
10° / .
10° b T .

F OOptimization 3

10* L 1 \ : 1 . 1 . L]

5 10 15 20 25
Transport time in ps

Fig. 10 Non-optimized transport, heating effects, and optimaatesult: Indicated is the excess energy as a function
to transport time, if the initial guess function is used foe transport. The curve (a) describes the energy at the final
time in vibrational quanta. The approximate zeros occurnathe deceleration of the potential minimum coincides
with the ion oscillation. Curve (b) displays the maximum ramfiabaticity parameter Eq_{20) for parametric heating
and the (c) the anharmonic dispersion loss parameter frarfi}] The grey dashed horizontal line indicates a heating
of one phonon and the borderline to non-adiabatic behawicuive (b). The optimization algorithm decreases the
excess displacement by more than 6 orders of magnitude. ifdiescindicate the squared phase space displacement
for the guess function and the final optimized control vaigag
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14 Optimization of segmented linear Paul traps and trangpatored particles

0,00

Fig. 11 Initial guess voltages normalized to
keep trap frequency constant. The old initial
guess voltages are indicated as dashed curves.
Note that the dynamics of the potential mini-
mum is unaffected by the normalization.

-0,06

Electrode Voltage in V

-0,08 -

Start electrode_,-"" "‘-~.\"|'arget electrode |

Time in ps

@1 = u1 +ug andase = uq /4. The new parameter, is now directly related to the instantaneous potential
minimumx. If only 45 is incorporated in the optimization process,can be readjusted at each step to
keepw constant.

The optimization results for the improved initial guesstagkes are shown in Fif.112. The transport
time could now be reduced tq.5 which corresponds to roughly two oscillation periods. therimproved
guess funtion the wavepacket dispersion appears now asthimant heating source. This process could
be suppressed either by further geometric optimizatiohefriap segments or by including a corresponding
additional term into the cost function of the optimizati@utine.

3.8 Discussion of the open-loop result

Our optimization results indicate that unwanted heatingnduion transport can be suppressed by many
orders of magnitude by the application of appropriate taependent control voltages. Technically, one
would achieve this using a fast high-resolution digitabttalog converter (DAC) with subsequent scaling
to the required voltage range. The small correction vokagig#ained from the optimization algorithm
might represent a problem, however a 16 bit DAC with an appatg scaling circuit would allow for a
discretization step of roughly 1.4 for a maximum voltage change of 0.1V. We have also checked th
robustness of the control field solutions against noise lgutating the trajectories with white noise of
variable level added on the voltages. We found a quadrapent#ence of the excess displacement on
the noise level. The deviation of the final displacement ftbmnoise-free case was negligibly small at
a noise level of 2QV. Experimental values for non-adiabatic heating effest®n transport are given in
Ref. [16]. The comparison with our theoretical values is pamd by the fact that these measurements
have carried out at higher axial trap frequency and theeigiain specie$Bet, but over a much longer
transport distance af.2 mm. However, low heating rates were obtained in those exyaris only if the
transport duration corresponds to a relatively large nurababout~ 100 of trap periods, whereas in our
case, a transport within ontyo trap periods was simulated.

4 OQutlook

The optimization of ion transport beyond the speed limitegiby the anharmonic terms of the axial trap-
ping potentials and parametric heating would be most effi@ad accurate if a full gquantum mechanical
equation of motion was employed. Quantum mechanical optiorarol methods are based on the same
variational principle as presented here for a classicddlpr, with the only difference that the terms in the
penalty functional are functionals on Hilbert space. Altons for quantum mechanical optimal control
are well developed and were applied to variety of differewbpems [41L[45]. In our case however, the
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Fig. 12 Nonadiabatic effects versus transport time for the impianéial guess voltages. Here, only the (a) excess
displacement and the (b) dispersion parameter are showampéric heating is not relevant anymore. The values for
the old initial guess voltages are indicated in grey. Therowed initial guess allows for successfull optimization at
a transport time of ps and an optimization of about eight orders of magnitudeassital phase space displacement.
Now, with a fewus transport, anharmonic dispersion becomes the predontieating source.

Velocity displacement in m/s
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Position displacement in um

Fig. 13 Phase space trajectories in the frame
co-moving with the potential minimum for the
improved initial guess voltages. The optimiza-
tion is now carried out for transport time of only
5us corresponding to about two oscillation pe-
riods in the harmonic trap potential. The thin
lines indicate the optimization progress and the
fat line shows the final result after 100 iter-
ations. Again, the optimization routine sym-
metrized the trajectory.

application of quantum mechanical optimal control was rett yossible for simply a technical reason:
The iterative solution via repeated solution of Schrodingguation over distances on the order of 200
and time spans on the order ofZdtakes too much computational effort, even with highly edfit meth-
ods like the Fourier Grid Hamiltonian combined with the Cyslev propagator technique [46]. On the
other hand, we have seen that for the typical electric piatisraf segmented Paul traps, the possibility to
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16 Optimization of segmented linear Paul traps and trangpatored particles

exertquantum control on the system is very restricted since the wavefandif the ion mainly senses a
harmonic potential. The classical approach is therefotesuéed to the problem.

In future work, we will investigate whether quantum conttoluld be exerted during short time spans
when the ion is displaced from the potential minimum anddf@e senses anharmonic contributions to
the potential. Extended Gaussian wave packet dynamicpiitl be used to take anharmonic terms ef-
ficiently into account. Thus, the application of quantum haetcal optimal control methods also opens
new possibilities, for example the control voltages cowddibed to devise new schemes for quantum com-
putational gates. In this case, the target wave functiothipptimization routine could be the first excited
motional state or even a superposition of different motidiwek states. To fulfill this aim, anharmonic
contributions to the trapping potentials are crucial.

Open loop optimal control methods will also be applied to $pétting of two ions [38]. With this
problem the benefit of going beyond the adiabatic limit wi#l &ven more promising. In an adiabatic
manner the splitting is initiated by lowering the steepragshe potential in order to increase the separation
of the two ions due to their mutual repulsion. This decre#isesrapping frequency and as a consequence
the speed of the procedure has to be decreased in order tadédoatic.

Open loop optimal control has proved to be successful foofitienization of short broadband RF pulses
in NMR experiments[48]. In a similar manner in ion trap bagadntum computing tailored, light pulses
can speed up and improve manipulation of the ian$ [[49, 50]cakes where analytical solution to the
control problem is not available open loop optimal contrethods could be applied to get optimized light
pulses or electrostatic field configurations for multi ionegaperations and entangled state preparation.

Another promising strategy that could be employed to aveting during ion transport is the closed
loop control technique. Here, the experimental resultsfedeback intoe.g. an evolutionary algorithm
to obtain improved values of the control parameters. Théifgeeate can be measured by comparing the
strengths of the red and blue motional sidebands after #mespiort proces$ [51]. The key problem for
applying closed loop control to ion transport lies in findeuy appropriate parametrization of the control
voltages in order to keep the parameter space small.

This technique may be applied equally well to the problermepfsation of two ions from one common
potential into two independent sections of the linear trap.

This work has merely started to apply the optimal controbtigdor ion trap based quantum computing.
Not only the motion of ions between trap segments, but thigeeptocess including shaped laser pulses
[49] and motional quantum state engineering might be imgdawith this technique.

Acknowledgements We acknowledge support by the European commission, thesBleeit-orschungsgemeinschaft
and by the Landesstiftung Baden-Wirttemberg within tlaenfeworks "quantum highway A8” and "atomics”. We
thank D. J. Tannor and T. Calarco for stimulating discussion

A Comparison of our Boundary-Element-package with commer@l soft-
ware

Accurate values of the electrostatic potentials are ofpatat importance for the determination of the
harmonic and the anharmonic terms of the trapping potentfal adequate choice of a numerical solving
method is the Boundary Element Method (BEM)I[52] 53]. BEM ifast and more accurate method
compared to the Finite Element Method (FEM) or Finite Diéiece Method (FDM). This is due to the
fact that BEM only needs to solve for the surface charges erlbctrode surfaces. With FEM/FDM the
Laplace equation has to be solved on a three dimensional. n@sihparison of the speed and accuracy
can be found in[[54]. In order to simplify the variation andiopzation of the trap geometry we have
implemented a free scriptable object oriented BEM packag8D and 2D [[55]. We have verified the
results for the geometry of Fill 3 of our package againstehelts of the commercial BEM program CPO
[68] (see Fig[IK c) and against the results of the commeF&M program FEMLABI[57] (see Fig—14 a).
The higher values in the latter case are due to the inaccofabg finite element method itself.
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CPO - BEM [55]. The left graph shows a 2D potential surface jplahe y-z plane. The right graph shows a line plot
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