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Single ions held in linear Paul traps are promising candidates for a future quantum computer. Here, we
discuss a two-layer microstructured segmented linear ion trap. The radial and axial potentials are obtained
from numeric field simulations and the geometry of the trap isoptimized. As the trap electrodes are seg-
mented in the axial direction, the trap allows the transportof ions between different spatial regions. Starting
with realistic numerically obtained axial potentials, we optimize the transport of an ion such that the mo-
tional degrees of freedom are not excited, even though the transport speed far exceeds the adiabatic regime.
In our optimization we achieve a transport within roughly two oscillation periods in the axial trap potential
compared to typical adiabatic transports that take of the order 102 oscillations. Furthermore heating due to
quantum mechanical effects is estimated and suppression strategies are proposed.
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2 Optimization of segmented linear Paul traps and transportof stored particles

1 Introduction

With a series of spectacular experiments the ion trap based quantum computing has proven its prominent
position for a future quantum computer among the list of candidates [1]. Starting with two-qubit gate
operations [2, 3], long lived two-qubit entanglement [4, 5,6], teleportation experiments [7, 8], and different
sorts of multi-qubit entangled states [9, 10, 4, 11], the record for qubit-entanglement is currently presented
in a 6-qubit cat state and a 8-qubit W-state [12, 13]. Future improvement is expected using the technique
of segmented linear Paul traps which allow to shuttle ions from a “processor” unit to a “memory” section
[14]. In such a quantum computer, strategies of quantum error correction will be critical for the successful
operation. However, as a result, many additional ancilla qubits are required and a large fraction of the
computational time will be consumed by shuttling ions between different segments. Detailed simulations
[15] show that as much as 99% of the operating time would be spent with the transportationprocesses. The
time required for the transport should be reduced such that the gate times are improved and decoherence
processes are reduced.

Thus, we assume that the improvement of these transport processes is necessary. In recent experiments
[12, 16], the shuttling has been carried out within the adiabatic limit, such that the time required for the
transport by far exceeds the oscillation time of the ion in the potential. It is a common misbelief that this
adiabatic transport is necessary to avoid the excitation ofvibrational quanta. In this spirit, we investigate
in this paper the optimization of fast and non-adiabatic transportation by applying classical optimal control
theory. Our simulations allow to predict the time sequence of control voltages such that ion heating is
suppressed.

Certainly, non-optimized fast transport of qubit ions intothe processor unit followed by sympathetic
cooling of a different ion species [17, 18] would be an alternative strategy. However, the necessary cooling
time would render the overall computational time even slower. First experiments show that the qubit
coherence is maintained during a transport, but that the vibrational quantum state may typically not be well
conserved after a fast shuttle of the ions. This impedes further qubit operations.

In the first section of this paper we start by numeric calculations of the electric trapping potential for
ions and show how to optimize the geometry of a two-layer microstructured segmented trap [19, 20]. The
same techniques may be applied for the optimization of planar ion traps [21, 22, 23, 24]. In the second
section we optimize the transport of a single ion between tworegions and illustrate the application of
optimal control theory [25]. Even though shuttling is fast,we can show that an optimized non-adiabatic
transport does not lead to significant heating.

2 Optimization of a two-layer microstructured ion trap

The idea of segmented linear Paul traps has been proposed to realize a scalable quantum computer [26,
27, 14]. Typically, these trap structures are fabricated out of etched semiconductor structures [20] or gold
plated insulators structured by microfabrication techniques [28]. Segmented traps come in various shapes
and can be categorized by the number of electrode layers forming the trapping potential: Planar traps with
one layer only, two-layer traps that are composed of two microstructured planar chips and traps with a
higher number of electrode layers. In our discussion, we will focus on the two-layer geometry which is
shown in Fig. 1. To illustrate the methods of fabrication, Fig. 2 gives an SEM picture of a gold plated
laser cut alumina wafer. Here, with fs-laser ablation [29],the cuts are clean and show a spatial resolution
of about 2µm. The DC-electrodes may be cut in form of “fingers” to reduce the insulating surface seen
directly from the ion position. This reduces the influence ofthe possibly charged surfaces to the trap
potential and has also been shown to reduce heating effects of the ion motion. Two structured wafers are
assembled to form a two-layer trap geometry as shown in Fig. 1.
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Fig. 1 Scheme of a two-layer micro structured segmented linear trap: The two electrode layers have a thicknesst and
are separated by the distances. The length of the trapping electrodes isw, the radio frequency electrodes (RF) and the
segmented electrodes (DC) are separated on each layer by thegapg (radial direction). The RF voltage is applied on
two continuous electrodes (black) and the static voltages are applied on the segmented DC electrodes (gray). The DC
electrode segments have the lengthk and are separated by a gaph. The symmetry axis is later denoted as the x- or
axial direction.

2.1 Design objectives

What are the optimal dimensions and aspect ratios in such an ion trap structure? What are the optimal
electric trap parameters?

Radial configuration At first, we aim for a high secular trap frequencyωsec/2π, such that there is a tight
dynamical confinement of the ions within the Lamb-Dicke regime. The confinement should typically reach
frequencies of several MHz in the radial direction. The required radial frequencies should be achieved with
moderate voltages on the electrodes of several hundreds volts. Therefore, the RF trap drive may not exceed
the break-through voltage - a limitation which plays a significant role in the case of very small traps
[20, 21].

A second aspect is the anharmonicity of the radial trapping potential. From the fact that linear traps with
optimized electrode shapes have been shown to load large crystals of ions [30], we would try to improve
the loading rate by reducing non-harmonic contributions tothe potential. Especially for larger q-values
when the trap drive power is chosen relatively high, non-linear resonances have been observed [31]. This
confirms that even small anharmonicities are relevant in thecase of large crystals.

Axial configuration In order to maintain the linear appearance of the ion crystals, the axial trap frequen-
cies have to be lower than the radial frequency. Nevertheless, the axial frequenciesωax/2π should exceed
a few MHz. Then, cooling techniques are simpler [32], gate operations may be driven faster, and a faster

Fig. 2 Detail view on the trap chip, 5µm gold
plated alumina of 125µm width cut by a fs-pulsed
Ti:Sapphire laser. The scanning electron microscope
picture shows several DC electrode segments of a sin-
gle layer.
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4 Optimization of segmented linear Paul traps and transportof stored particles

Fig. 3 Electric potential of the two-layer mi-
crostructure trap in radial direction (yz cross
section). Ions are confined by a pseudo-
potential on thex-axis. Here, the potential
lines are normalized to a trap drive amplitude
Urf of 1V. In the central trapping region near
the x-axis the electric potential may be approx-
imated by a quadrupole potential as the radial
harmonic pseudopotential for single ions.

adiabatic transport of ions between segments may be achieved. Ion transport between axial segments re-
quires a fast temporal change of the trap control voltages onthe order of severalµs. This is accomplished
by controlling the DC-electrode voltages by means of fast digital-to-analog converters (DAC) and would
be technically much more involved for high voltages.1

Furthermore, single ions will have to be split off and mergedto ion strings throughout the operation
of a segmented ion trap quantum computer. The investigationof splitting and merging operations is not
within the scope of this paper [33], however, it was pointed out that a highly non-harmonic axial potential
improves this situation [34]; it implies certain geometrical ratios in the axial trap construction.

2.2 Operating mode and modeling of the segmented linear Paultrap

Linear Paul traps are characterized by a two-dimensional dynamical confinement in the radial direction
(yz plane) and a static confinement in the axial direction (x-axis). The applied radio frequencyωrf/2π to
the RF electrodes (see Fig.1) generates a dynamical electric potentialφrad(y, z, t) which leads to a strong
confinement of single ions along the axial direction at the radio frequency node. Typically, the axial
potentialφax(x, t) formed by the quasistatic voltages applied to the segmentedDC electrodes is weaker

1 Therefore the geometry should also take into account the limited voltage range of the DACs.

Fig. 4 a) Numerical simulation of the trap stiffnessc2 in radial direction as a function of the slit widthg. For a slit
width of 126µm we estimate a value of 5.5·107m−2 which corresponds to a radial frequency ofωrad/2π = 5MHz. b)
Dependence of the fourth order parameterc4 to the slit widthg. The dashed line near 126µm indicates the optimization
result. c) The normalized hexapole coefficientc4 normalized by the quadrupole coefficientc2 indicates the descreased
loss of the trap drive power.
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than the radial confinement to support a robust alignment of the linear ion string. The shape of this axial
potential depends on the geometry of the segmented DC electrodes. The time-dependent variation of the
DC control voltages allows to transport ions in the axial direction without micromotion. We separate the
numerical optimization of the linear Paul trap into a radialand axial calculation - first, the radial geometry
configuration is optimized for strong confinement in the RF node, then the axial electrode geometry is
calculated based on the radial geometry.

The lowest-order approximation of the dynamical trap potential φrad(y, z, t) in radial direction is similar
to that of a quadrupole mass filter [35]. The geometric factorc2 describes the quadrupole potential strength
in both radial directions for a symmetric radial electrode geometry:

φrad(y, z, t) = c2/2 (y
2 − z2) (Udc + Urf · cos(ωrf t)) (1)

An ion trajectory is described as a superposition of a harmonic secular motion at frequencyωsec =

ωrf/2
√

a+ q2/2 (lowest order approximation) and the superposed micromotion at the radio frequency
ωrf . The frequency of the secular motion is characterized by thedimensionless stability parametersa andq
of the radial motion [36] which depends on massm and chargee of the ion, the RF amplitudeUrf applied
to the RF electrodes and the static voltagesUdc applied to the segmented electrodes of the trap:

a =
4e Udc

mω2
rf

c2 , q =
2e Urf

mω2
rf
c2 (2)

A two-dimensional domain of the stability parametersa andq defines a region of stable trajectories as
solutions of the classical equations of motion2. In general, the electrode configurations result in an electric
potential that may be expanded in spherical multipole components, where the quadrupole contributionc2
represents the dominating part for reasonable Paul trap geometry; the hexapole contributionc4 contributes
mainly to the non-harmonic part.

The quadrupole approximation of the confining potential is inaccurate if the electrode shapes deviate
strongly from the ideal hyperbolic form. As a result, anharmonicities and coupling terms appear inside
the stability region [31]. As the radio frequency voltage isportioned to various higher order terms and
not only to the quadrupole contribution of the potential a loss of the trap stiffness c2 is observed (Fig. 4).
For simplicity we idealizeUdc as zero and characterize the anharmonicity of the pseudopotential in radial
direction along the two radial principal axes, here denotedby a radial coordinater(y, z), by the leading
terms of the following polynomial expansion:

φrad(r(y, z), t) ∝
∑

n

cn rn (3)

Because of the radial electrode symmetry the odd-numbered termsc1, c3, . . . are negligible and the
potential offsetc0 is irrelevant. The optimization of the radial trap potential leads to a suppression of the
higher order potential contribution, such that the hexapole termc4 as the leading non-harmonic contribution
is small.

Based on the geometry for an optimized radial confinement theaxial static trap potential along the
symmetry axisx can be analogously expanded,

φx(x, t) ∝
∑

n

dn xn. (4)

The axial potential properties are determined by the segmented electrode geometry, especially the axial
width of the individual electrode segments. An optimal axial confinement of the ion requires a maximum
quadratic termd2. The transport of a single ion between axial segments is facilitated if the potentials from
adjacent segments exhibit a large overlap. For the splitting operation of an aligned two-ion crystal into
single ions in independent axial potentials, Steaneet al. [34] suggest a potential shape with a maximum
quartic termd4 and minor quadratic contributiond2.

2 We discuss the optimization in the so-called lowest stability region includinga = 0 andq ≤ 0.9
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6 Optimization of segmented linear Paul traps and transportof stored particles

R c2 ωrf/2π Urf q ωrad/2π ωax/2π ∆

[µm] [1/m2] [MHz] [V] [MHz] [MHz] [meV]

Aarhus [37] 24Mg+ 1750 1.6·105 4.2 2·50...150 0.2...0.6 0.3...0.8 ≤0.4 ≤105

Innsbruck [38] 40Ca+ 800 3.9·106 23.5 700 0.6 5.0 1.0 103

Michigan [39] 112Cd+ 100 2.2·107 48.0 0.3 5.0 2.5

Simulation 40Ca+ 89 5.3·107 50.0 120 0.3 5.0 2.5 300

Michigan [40] 112Cd+ 30 4.7·108 15.9 8 0.6 4.3 1.0 80

Table 1 Trap design parameters of several types of linear ion traps:The geometric trap sizeR given by the minimal
distance between ion position and electrode surface, the quadratic geometry factorc2 of the radial cross section de-
scribes the magnitude of the radial confinement at the given electrode voltage, the trap drive frequencyωrf/2π together
with the trap drive voltageUrf and the RF stability parameterq results in the radial motional frequencyωrad/2π. For
comparison the axial motional frequencyωax/2π is shown. The trap depth∆ summarizes the confinement of a single
ion.

Relevant parameters of various linear ion traps are summarized in Table 1. The Aarhus hexapole design
with endcaps [37] and the Innsbruck blade design [38] show a traditional macroscopic approach of mm-
size linear trap design without segmentation of the controlelectrodes. The Michigan trap designs, the
microstructured three-layer trap [39] and the semiconductor two-layer trap [40], represent the progress in
the miniaturization of linear ion traps and the segmentation of the control electrodes for the transport of
single ions and the splitting of ion crystals.

2.3 Optimization of the radial potential

In the first step we optimize the radial confinement of the trap. The width of the slit is varied and the electric
potential is calculated, see Fig. 3. The distance of the two layers is fixed to the thickness of a commercial
alumina wafer (125µm) which acts as a spacer. Then a variable parameter is the width g of the lateral laser
cut in the trap chips, respectively the distance between theRF and the DC-electrodes of the trap chips. We
find that the radial confinement increases with decreasing slit width g, see Fig. 4. Interestingly, for this
geometry, the radial potential is almost harmonic since thefourth order parameterc4 is nearly vanishing.
For a width of 126µm the radial frequency ofωrad/2π = 5 MHz is reached for a singly charged40Ca+ ion
with a peak RF voltage of 120V at 50 MHz.

2.4 Optimization of the axial potential

The optimization of the axial potential determines the performance of the fast ion transport. Additional
requirements are a deep axial potential even with moderate DC control voltages and the capability of the
segments to split a two-ion crystal into two single ions trapped independently in distinct potential minima.

In a first step we investigate the maximization of the axial trap frequencyωax as a function of the segment
width k and the cut widthh, see Fig.1. The numerical three-dimensional electric potential simulation
depicted in Fig. 6 shows the expected result: For a large width of the segments the potential is expected to
be shallow, and for a very short width the electric potentialfalls rapidly off from the electrode tips, such
that again a weak confinement is found. The maximum axial trapfrequency is reached for a segment width
kopt ≃ 70µm, a gap between DC and RF electrodeg= 126µm and a cut width ofh= 30µm. Changing the
size of the segment width by 50% results only in a 20% variation ofd2 which is easily compensated by the
DC voltage.

The trapping of single ions and transport require a different electrode configuration. For the trans-
port problem, it is important that the potentials generatedby adjacent DC segments exhibit a large spatial
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Fig. 5 Numerical calculation of the axial electric potentialsφax, all cases (a) to (c) for the optimized radial slit width of
g = 126 µm. a) DC segments with a width ofk = 90 µm and gaps between axial electrodes ofh = 30 µm result in a
maximald2 coefficient. The potential of the adjacent electrode is plotted and shows only partial overlap (dashed gray).
b) Optimized transport scheme: The DC electrodes are divided into equal parts withk =45µm andh =15µm. If both
electrodes are at the same voltage of 1V, the potential is nearly identical to the optimized case (a). For transporting an
ion, the potential minimum is shifted by changing the voltages from ..0/0/1/1/0/0..→ ..0/0/0/1/1/0.. continuously. The
axial potentials exhibit a large overlap which improves thetransport of the ions. c) Simplified transport scheme: Axial
potential for DC segments withk = 45 µm andh = 15 µm. Now, only a single segment is at 1 V. For transporting
the voltages are changed from ..0/1/0/0/..→ ..0/0/1/0/...

overlap (see Fig. 5). To achieve both ideal trapping and transport conditions we split each electrode into
two parts (b). For trapping we bias two neighboring electrodes with an equal voltage in order to obtain a
larger “effective” electrode. Due to the smaller segmentation a better overlap of the individual potentials
is provided during transport. As the ion is displaced duringthe transport process we expect that the anhar-
monic termsd4, d5, . . . of the potential will cause heating, see Sect. 3.5. Therefore we have determined the
optimal effective segment width such that thed4 term is minimized. The results are shown in Fig. 6.

In the following, we will use the simplified transport schemein Fig. 5 (c) with one start and one target
electrode only and investigate the necessary time dependence of both DC segment control voltages.

3 Open loop control of ion transport

After the optimization of all geometric trap parameters we now focus on the optimization of the time de-
pendent trap control voltages which are applied to the DC segments in order to transport the ion: Our

Copyright line will be provided by the publisher



8 Optimization of segmented linear Paul traps and transportof stored particles

Fig. 6 a) Numerical simulation of the axial trap stiffnessd2 as a function of the segment widthk with h =30µm. b)
Dependence of the fourth order parameterd4, the dashed line neark =160µm indicates the zero crossing.

goal will be to decrease the time required for the transport far below the limit of adiabaticity, such that
the transport is finished within a single oscillation periodonly, with the constraint to avoid vibrational
excitation. To a good approximation the radial ion confinement does not influence the axial transport be-
tween two segments as the ion is moving along the central RF-node with negligible micromotion. Note,
that our calculation takes into account two axial segments but may be adapted to a larger number of seg-
ments, see Fig. 5 (c). The potential which we use for the optimization of the ion transport is the result of
a boundary element calculation, see appendix A. In order to transport the ion, the potential minimum is
shifted by changing the DC control voltagesui(t). Intuitively, we estimate that a smooth acceleration and
a smooth deceleration of the ion is advantageous. Searchingfor the precise shape of the segment control
non adiabatic heating due to fast transport has to be minimized.

3.1 Non-adiabatic heating sources

For a transport duration approaching the timescale given bythe axial trap frequency, the following non-
adiabatic effects are expected to occur:

1. Classical displacement error: The ion cannot adiabatically follow the potential minimum and starts
oscillating, such that it possesses excess energy after thetransport process. This behavior may be
understood classically. In the quantum picture it corresponds to the buildup of a nonvanishing dis-
placementα during transport.

2. Wavepacket dispersion heating: With a spatial extension of about 10 to 20 nm, the undisplacedwave-
function hardly senses any anharmonicity in an electric potential that is generated by 50 to 100µm
sized electrode structures. However, during the transportthe wavepacket undergoes significant ex-
cursions of a fewµm out of the minimum of the potential. Here, exposed to higheranharmonicd4
contributions, the shape of the ion wavepacket disperses which results in vibrational excitation.

3. Parametric heating: As the control voltages are changed, the harmonic frequencyω of the instanta-
neous potential is temporarily varying. If the width of the wavepacket can not follow the variation of
ω(t) adiabatically, parametric heating to higher vibrational states will occur.

3.2 Overview of the applied optimization strategies

In the following Sect. 3.3 we minimize the classical displacement error by applying the optimal control
method. For the optimization of this entirely classical error source we need to optimize the ion’s classical
trajectory such that a cost function - weighting the ion’s phase space displacement after the transport - is
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minimized. The solution obtained by the optimal control algorithm does not show considerable heating by
wavepacket dispersion. However, we find a significant contribution of parametric heating. A first guess
would be to include an additional term in the cost function toprevent parametric heating, involving time
derivatives of the control fields.

As this approach fails due to implementational difficulties, we suppress parametric heating by an ap-
propriate initial guess which keeps the trap frequency perfectly constant. This is achieved by a variable
transformation fromu1,2(t) to new parameters that allow to decouple the strength of the potential and its
minimum position. Starting now the optimal control method yields a solution that reduces the displacement
error. Since the control parameters are only slightly modified by the optimization algorithm, the parametric
heating and also the wavepacket dispersion heating are negligible.

We conclude that in our case, the choice of variables that decouple the essential optimization parameters
[41, 42] and a well suited initial guess function are helpfuland maybe critical for the success of the optimal
control method.

3.3 The optimal control method

This section will give an introduction to optimal control theory applied to single ion transport. We use
the method derived from a variational principle with unbounded controls and fixed final time [43]. We
consider the dynamics of a singly charged single40Ca+ ion confined in a segmented linear Paul trap. We
assume that the ion is laser cooled to its motional ground state3 pertaining to the axial degree of freedom.
Neglecting the radial motion, the motional state of a trapped ion is classically represented by a coordinate
vector~ξ(t) = (x, v)

T in a two dimensional phase space.
The equation of motion under consideration of two uniform electrode segments with arbitrary voltages

applied on them, reads

~̇ξ = ~a(~ξ, {ui}) =
(

v

− 1
m

∑

i
∂Vi(x)

∂x ui(t)

)

. (5)

Here, the indexi runs over the two electrodes andVi(x) are the normalized electrostatic potentials at
electrodei. Eq. (5) then holds for arbitrary electrode voltages due to the linearity of the Laplace equation.
Our goal is now to find time-dependent control voltagesui(t) that move the ion from the center of electrode
1 to the center of electrode 2. We desire to have the ion at restafter the transport process. The performance
of a given control field is judged by the cost function

h(~ξ(tf )) = α (x(tf )− xf )
2 + β v(tf )

2, (6)

which is a measure of the phase space displacement at the finaltime tf . α andβ weight the contributions
relative to each other. Taking Eq. (5) as a constraint for alltimest, we obtain the cost functional

J(~ξ, ~ξp, {ui}) =
∫ tf

t0

∂h

∂~ξ
· ~̇ξ + ~ξp ·

(

~a(~ξ, {ui})− ~̇ξ
)

dt (7)

where we have introduced the costate vectorξp = (xp, vp)
T as a Lagrange multiplier in order to guarantee

that the optimization result obeys the equation of motion Eq. (5). The time dependence of all variables has
been dropped in the notation. For an optimal control field,δJ = 0 has to hold, therefore the variational
derivatives with respect to~ξ, ~ξp and~u have to vanish. The derivative with respect to~ξp restores the equa-
tions of motion Eq. (5) for the state vector, the derivative with respect to~ξ yields equations of motion for
the costate vector:

3 The calculation is valid also for thermal and coherent states with modest excitation.
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10 Optimization of segmented linear Paul traps and transport of stored particles

Fig. 7 Initial guess for the control voltages,
corresponding to Eq. (13).

~̇ξp = −∂~a

∂~ξ
· ~ξp ⇒

ẋp = vp
1

m

∑

i

∂2Vi(x)

∂x2
ui

v̇p = −xp. (8)

Variation ofJ with respect to the control field leads to an additional algebraic equation:

∂~a

∂ui
· ~ξp = 0 ⇒ − 1

m

∂Vi(x)

∂x
vp = 0. (9)

The boundary condition for~ξp is derived by variation with respect to the final state:

∂h

∂~ξ

∣

∣

∣

∣

tf

= 0. (10)

If we let the ion start at rest in the potential well pertaining to the first electrode, the set of boundary
conditions for the state and costate vector reads

x(t0) = 0

v(t0) = 0

xp(tf ) = 2 (x− xf )

vp(tf ) = 2 v. (11)

Eqs. (5), (8) and (11) together with (9) represent a system ofcoupled ordinary nonlinear differential
equations with split boundary conditions, i.e. for two of the variables, initial conditions are given whereas
for the other two, the values at the final time are specified. This makes a straightforward numerical inte-
gration impossible. The system is therefore solved in an iterative manner by means of a gradient search
method. The scheme of this steepest descent algorithm is as follows:

1. Choose an initial guess for the control fieldui(t).

2. Propagatex andv from t = t0 to t = tf while usingui(t) in the corresponding equations of motion.
At each time step, save the value ofx(t).
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Fig. 8 Optimized control voltages given in
terms of change with respect to the initial
guess values. The solid curve indicates the
voltageu1(t) at the start electrode, the dashed
one the voltageu2(t) at the destination elec-
trode.

3. Determinexp(tf ) andvp(tf ) according to (11).

4. Propagatexp andvp backwards in time fromt = tf to t = t0. At each time step, save the value of
vp(t).

5. For each time step, update the control field according to

unew
i (t) = uold

i (t) + τ vp
1

m

∂V1(x)

∂x
(12)

6. Repeat steps 2 to 5 until the specified threshold fidelity isreached.

In Eq. (12), the gradient search step widthτ is simply chosen by trial and error. If it is too small, the
algorithm converges too slowly, if it is too large, the algorithm starts to oscillate. The values ofα andβ in
Eq. (6) are determined based on experience. For the data presented in the following section, these values
areα = 10, β = 1 andτ = 5 · 10−8. The algorithm converged after about 200 iterations.

3.4 Optimization results

For the initial guess the control field is chosen as follows:

u
(0)
0 (t) =











V0 for t ≤ 0

V0 sin2( πt
2∆t) for 0 < t ≤ ∆t

0 for t > ∆t

u
(1)
1 (t) = V0 − u

(0)
0 (t) (13)

This provides on the one hand a smooth and symmetric acceleration and deceleration of the ion, on the
other hand the potential minimum exactly coincides with thedesired positions at the initial and final times.
In principle, other initial guess voltages like Gaussian flanks can be used as well. The reference voltage is
V0 = −0.1V , corresponding toω ≈ 2π · 0.5 MHz in the initial and final potential wells. The switching
time is set to∆t = 8.0µs, the total time interval runs from−1.0µs to 9.0µs.

3.5 Ion heating due to anharmonic dispersion

Quantum mechanically we describe the system with a Hamiltonian operator pertaining to a time-dependent
harmonic oscillator with an anharmonic perturbation:

H0(t) =
p̂2

2m
+

m ω(t)2

2
(x̂− x0(t))

2 + κ(t)(x̂ − x0)
4. (14)

Copyright line will be provided by the publisher



12 Optimization of segmented linear Paul traps and transport of stored particles

Fig. 9 Phase space trajectories in the frame
co-moving with the potential minimum. The
figure shows the trajectories pertaining to iter-
ations 0, 10 , ..., 100. At iteration 100, the ion
arrives close to the origin. Note that the trajec-
tory tends to be symmetrized by the optimiza-
tion algorithm.

Without temporal variation ofω and the anharmonic part4 of the potential, the solution of the time-
dependent Schrödinger equation is simply given by a coherent state|α(t)〉, where the displacement pa-
rameterα(t) can be inferred from the classical trajectory. Anharmonic dispersion of a wavepacket occurs
at a timescale given byTrev/(∆n)2 [44], with the revival time

Trev = 2h

(

d2En

dn2

)

−1

(15)

and the spread over the vibrational levels∆n = α(t). The shift of the energy levelsEn induced by
the anharmonic contribution causes a finite dispersion timeand can be calculated in first order stationary
perturbation theory:

∆En(t) =
5

4

h̄2κ(t)

m2ω(t)2
n2. (16)

We now define a generalized dispersion parameter
∫ tf

t0

dt
∆n2

Trev
=

5 h̄

4π m2

∫ tf

t0

dt
κ(t)|α(t)|2

ω(t)2
. (17)

If this parameter is sufficiently small, anharmonic dispersion will not contribute to heating.

3.6 Quantum mechanical estimate of non-adiabatic parametric heating

We now check if the width of the wavepacket adiabatically follows the harmonic frequencyω(t). The
adiabatic theorem states that if

h̄〈φm(t)|φ̇n(t)〉 ≪ |En(t)− Em(t)| (18)

is fulfilled, transitions between eigenstates can be neglected. The parametric time dependence of the eigen-
states states in Eq. 18 is the implicit time dependence viaω(t). We find the following nonvanishing matrix
elements:

〈φn+1|φn〉 =
ω̇√
2π3ω

n
√
n+ 1

〈φn+2|φn〉 =
ω̇

4ω

√

(n+ 1)(n+ 2) (19)

4 In contrast tod4, κ(t) is given by expanding the potential around the instantaneous potential minimum.
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and similar expressions form = n− 1, n− 2. Thus, parametric heating can be neglected if

n3/2 ω̇

ω2
≪ 1. (20)

Numerical evaluation of the matrix elements yields the result that the adiabatic following condition is
fulfilled for n = 0, but is clearly violated for the highn occurring for large excursion of the wavepacket,
for examplēn ≈ 2000 for ∆x = 1 µm at a transport time of 10µs, see Fig. 10.

3.7 Improved initial guess function and ultra-fast transport

We therefore have to refine our optimization strategy: As canbe seen in Fig. (8), the control voltages
changes are symmetric, which indicates that one control degree of freedom can be sacrificed in order to
keepω(t) constant. This is achieved as follows: The initial guess voltages Eq. (13) are normalized to
a constantω before the optimization. The optimization process then leads to variations inω(t) that are
negligibly small - typically leading to maximum values ofω̇/ω2 on the order of10−5 such that according
to Eq.(20) the adiabatic theorem is fulfilled even after the optimization algorithm has cured the classical
phase space displacement heating. This is in strong contrast to the unconstrained, previous guess function,
where we obtaiṅω/ω2 ≃ 10−2. It should be noted that parametric heating can be completely suppressed
as well for optimized control voltages. This can be achievedby changing the set of control parameters to

Fig. 10 Non-optimized transport, heating effects, and optimization result: Indicated is the excess energy as a function
to transport time, if the initial guess function is used for the transport. The curve (a) describes the energy at the final
time in vibrational quanta. The approximate zeros occur when the deceleration of the potential minimum coincides
with the ion oscillation. Curve (b) displays the maximum non-adiabaticity parameter Eq. (20) for parametric heating
and the (c) the anharmonic dispersion loss parameter from Eq. (17). The grey dashed horizontal line indicates a heating
of one phonon and the borderline to non-adiabatic behavior in curve (b). The optimization algorithm decreases the
excess displacement by more than 6 orders of magnitude. The circles indicate the squared phase space displacement
for the guess function and the final optimized control voltages.
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14 Optimization of segmented linear Paul traps and transport of stored particles

Fig. 11 Initial guess voltages normalized to
keep trap frequency constant. The old initial
guess voltages are indicated as dashed curves.
Note that the dynamics of the potential mini-
mum is unaffected by the normalization.

ũ1 = u1+u2 andũ2 = u1/ũ1. The new parameter̃u2 is now directly related to the instantaneous potential
minimumx0. If only ũ2 is incorporated in the optimization process,ũ1 can be readjusted at each step to
keepω constant.

The optimization results for the improved initial guess voltages are shown in Fig. 12. The transport
time could now be reduced to 5µs which corresponds to roughly two oscillation periods. Forthe improved
guess funtion the wavepacket dispersion appears now as the dominant heating source. This process could
be suppressed either by further geometric optimization of the trap segments or by including a corresponding
additional term into the cost function of the optimization routine.

3.8 Discussion of the open-loop result

Our optimization results indicate that unwanted heating during ion transport can be suppressed by many
orders of magnitude by the application of appropriate time-dependent control voltages. Technically, one
would achieve this using a fast high-resolution digital-to-analog converter (DAC) with subsequent scaling
to the required voltage range. The small correction voltages obtained from the optimization algorithm
might represent a problem, however a 16 bit DAC with an appropriate scaling circuit would allow for a
discretization step of roughly 1.5µV for a maximum voltage change of 0.1V. We have also checked the
robustness of the control field solutions against noise by calculating the trajectories with white noise of
variable level added on the voltages. We found a quadratic dependence of the excess displacement on
the noise level. The deviation of the final displacement fromthe noise-free case was negligibly small at
a noise level of 20µV. Experimental values for non-adiabatic heating effects in ion transport are given in
Ref. [16]. The comparison with our theoretical values is hampered by the fact that these measurements
have carried out at higher axial trap frequency and the lighter ion species9Be+, but over a much longer
transport distance of1.2 mm. However, low heating rates were obtained in those experiments only if the
transport duration corresponds to a relatively large number of about≃ 100 of trap periods, whereas in our
case, a transport within onlytwo trap periods was simulated.

4 Outlook

The optimization of ion transport beyond the speed limits given by the anharmonic terms of the axial trap-
ping potentials and parametric heating would be most efficient and accurate if a full quantum mechanical
equation of motion was employed. Quantum mechanical optimal control methods are based on the same
variational principle as presented here for a classical problem, with the only difference that the terms in the
penalty functional are functionals on Hilbert space. Algorithms for quantum mechanical optimal control
are well developed and were applied to variety of different problems [41, 45]. In our case however, the
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Fig. 12 Nonadiabatic effects versus transport time for the improved initial guess voltages. Here, only the (a) excess
displacement and the (b) dispersion parameter are shown, parametric heating is not relevant anymore. The values for
the old initial guess voltages are indicated in grey. The improved initial guess allows for successfull optimization at
a transport time of 5µs and an optimization of about eight orders of magnitude in classical phase space displacement.
Now, with a fewµs transport, anharmonic dispersion becomes the predominant heating source.

Fig. 13 Phase space trajectories in the frame
co-moving with the potential minimum for the
improved initial guess voltages. The optimiza-
tion is now carried out for transport time of only
5µs corresponding to about two oscillation pe-
riods in the harmonic trap potential. The thin
lines indicate the optimization progress and the
fat line shows the final result after 100 iter-
ations. Again, the optimization routine sym-
metrized the trajectory.

application of quantum mechanical optimal control was not yet possible for simply a technical reason:
The iterative solution via repeated solution of Schrödinger equation over distances on the order of 200µm
and time spans on the order of 20µs takes too much computational effort, even with highly efficient meth-
ods like the Fourier Grid Hamiltonian combined with the Chebyshev propagator technique [46]. On the
other hand, we have seen that for the typical electric potentials of segmented Paul traps, the possibility to
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16 Optimization of segmented linear Paul traps and transport of stored particles

exertquantum control on the system is very restricted since the wavefunction of the ion mainly senses a
harmonic potential. The classical approach is therefore well suited to the problem.

In future work, we will investigate whether quantum controlcould be exerted during short time spans
when the ion is displaced from the potential minimum and therefore senses anharmonic contributions to
the potential. Extended Gaussian wave packet dynamics [47]could be used to take anharmonic terms ef-
ficiently into account. Thus, the application of quantum mechanical optimal control methods also opens
new possibilities, for example the control voltages could be used to devise new schemes for quantum com-
putational gates. In this case, the target wave function forthe optimization routine could be the first excited
motional state or even a superposition of different motional Fock states. To fulfill this aim, anharmonic
contributions to the trapping potentials are crucial.

Open loop optimal control methods will also be applied to thesplitting of two ions [33]. With this
problem the benefit of going beyond the adiabatic limit will be even more promising. In an adiabatic
manner the splitting is initiated by lowering the steepnessof the potential in order to increase the separation
of the two ions due to their mutual repulsion. This decreasesthe trapping frequency and as a consequence
the speed of the procedure has to be decreased in order to stayadiabatic.

Open loop optimal control has proved to be successful for theoptimization of short broadband RF pulses
in NMR experiments [48]. In a similar manner in ion trap basedquantum computing tailored, light pulses
can speed up and improve manipulation of the ions [49, 50]. Incases where analytical solution to the
control problem is not available open loop optimal control methods could be applied to get optimized light
pulses or electrostatic field configurations for multi ion gate operations and entangled state preparation.

Another promising strategy that could be employed to avoid heating during ion transport is the closed
loop control technique. Here, the experimental results arefed back intoe.g. an evolutionary algorithm
to obtain improved values of the control parameters. The heating rate can be measured by comparing the
strengths of the red and blue motional sidebands after the transport process [51]. The key problem for
applying closed loop control to ion transport lies in findingan appropriate parametrization of the control
voltages in order to keep the parameter space small.

This technique may be applied equally well to the problem of separation of two ions from one common
potential into two independent sections of the linear trap.

This work has merely started to apply the optimal control theory for ion trap based quantum computing.
Not only the motion of ions between trap segments, but the entire process including shaped laser pulses
[49] and motional quantum state engineering might be improved with this technique.
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and by the Landesstiftung Baden-Württemberg within the frameworks ”quantum highway A8” and ”atomics”. We
thank D. J. Tannor and T. Calarco for stimulating discussions.

A Comparison of our Boundary-Element-package with commercial soft-
ware

Accurate values of the electrostatic potentials are of paramount importance for the determination of the
harmonic and the anharmonic terms of the trapping potentials. An adequate choice of a numerical solving
method is the Boundary Element Method (BEM) [52, 53]. BEM is afast and more accurate method
compared to the Finite Element Method (FEM) or Finite Difference Method (FDM). This is due to the
fact that BEM only needs to solve for the surface charges on the electrode surfaces. With FEM/FDM the
Laplace equation has to be solved on a three dimensional mesh. Comparison of the speed and accuracy
can be found in [54]. In order to simplify the variation and optimization of the trap geometry we have
implemented a free scriptable object oriented BEM package for 3D and 2D [55]. We have verified the
results for the geometry of Fig. 3 of our package against the results of the commercial BEM program CPO
[56] (see Fig. 14 c) and against the results of the commercialFEM program FEMLAB [57] (see Fig. 14 a).
The higher values in the latter case are due to the inaccuracyof the finite element method itself.
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Fig. 14 a) Numeric result obtained by FEMLAB substracted from the result of BEM [55], b) FEMLAB - CPO, c)
CPO - BEM [55]. The left graph shows a 2D potential surface plot in the y-z plane. The right graph shows a line plot
in the same plane in the direction of the two diagonal directions.
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