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The system of OD equations

{
ẍ + `1θ̈1 + gθ1 = 0

ẍ + `2θ̈2 + gθ2 = 0
is rewritten in the

new variables x1 = x + `1θ1, x2 = x + `2θ2, u = x in the matrix form.
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[
d2
t + g

`1
0 − g

`1
0 d2

t + g
`2
− g
`2

]
·

x1x2
u

 =

00
0


Notably: this system does not depend on the masses mi !
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Since g is the gravitarional constant and `1, `2 are �xed, we treat them as
parameters, i.e. our ground �eld is Q(g , `1, `2).

Since nothing depends on time t, we have a system of ODEs with constant
coe�cients, rewritten as a matrix over the algebra of operators
Q(g , `1, `2)[dt ].

Computations show that the system is (strongly) controllable; and there's
the left inverse matrix of the so-called image representation of the system:[

`1
g2(`1−`2)

− `2
g2(`1−`2)

0
]

We see that the result is valid, provided `1 6= `2!
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Let us rerun the computation for the case `1 = `2 =: `!

Over system, written as a matrix over the algebra of operators Q(g , `)[dt ].[
d2
t + g

` 0 −g
`

0 d2
t + g

` −g
`

]
is not controllable anymore: there is a nonzero torsion submodule!

It is annihilated by the ideal 〈`d2
t + g〉 meaning there are autonomous

elements like the di�erence x1 − x2 of the positions of the pendula
(relative to the bar).
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Recall some results from Algebra
Let R be a ring (associative, with 1).

A free module Rm: set of (column) vectors of length m with entries
from R v = [r1, . . . , rm]T =

∑
riei , where {ei} form a basis of R

analogy with vector spaces: Rm is closed under addition and under the
multiplication by "scalar" elements from R .

A submodule of Rm is an analogue to the subspace: if it is generated
by the �nite set of vectors; put them into a matrix U.

Pass to the factor-module M = Rm/U, which is �nitely generated by
[e1], . . . , [em] with [e] = e + U.

If R = K is a �eld, we are back in the course of linear algebra

Every nonzero submodule is free; every nonzero factor-module is free.

Over a general ring R :

Free ⇒ stably free ⇒ projective ⇒ �at ⇒ torsion-free.
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The �rst appearance of torsion
Let R be a PID (principal ideal domain) like Z or K [x ]: there are no
zero-divisors except 0.

Main Theorem on �nitely generated modules over PID

∃k ∈ N0,∃t ∈ N0 ∃a1, . . . , ak 6= 0 such that a1 | a2 | . . . | ak

M ∼= R/〈a1〉 × · · · × R/〈ak〉 × Rt

Let D :=

a1 . . . 0
... · · ·

...
0 . . . ak

 , then M ∼= Rk/D ⊕ Rt and t(M) := Rk/D.

For a domain R , m ∈ M is a torsion element, if ∃0 6= r ∈ R : r ·m = 0M .
The torsion submodule t(M) of M consists of torsion elements.

Dichotomy

M is called torsion module, if t(M) = M, and torsion-free module, if
t(M) = {0}. (In System theory re�ected by controllable/autonomous.)
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Localization of commutative domains

Convention

From now on: let R be a domain (no zero-divisors).

De�nition

A subset S of R is called a multiplicative set if

0 /∈ S ,

1 ∈ S and

S is multiplicatively closed, that is, ∀s, t ∈ S : s · t ∈ S .

Notation: [S ] := the smallest multiplicative superset of S .
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Construction

Theorem (Classical)

Let S be a multiplicative set in a commutative domain R . Then

S−1R :=
{ r
s
| s ∈ S , r ∈ R

}
=
{
s−1r | s ∈ S , r ∈ R

}
is a commutative domain, where

r1
s1

= r2
s2

if and only if s1r2 = s2r1,
r1
s1

+ r2
s2

= s2r1+s1r2
s1s2

,
r1
s1
· r2s2 = r1r2

s1s2
.

Example

R = Z, S = Z \ {0} ⇒ S−1R =
{
r
s | r , s ∈ Z, s 6= 0

}
= Q
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Commutative examples I
Let R be a commutative domain and K a �eld.

Quotient �elds

S = R \ {0} ⇒ Quot(R) := S−1R =
{
r
s | r , s ∈ R, s 6= 0

}
is a �eld.

Quot(Z) = Q
Quot(K [x ]) = K (x)

Quot({holomorphic functions}) = {meromorphic functions}

Origin of the name: algebraic geometry

Let a ∈ Kn and m := 〈x1 − a1, . . . , xn − an〉 ⊆ K [x1, . . . , xn] =: P . Then
S := R \m is a multiplicative set in P and Pm := S−1P describes the
�local� behavior near a.

Laurent polynomials

For [x ] =
{
xk | k ∈ N0

}
: [x ]−1K [x ] = K [x , x−1] ( K (x)
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Commutative examples II

R Quot(R)

Rf

Rp

Rp :=
{

p
q
| p, q ∈ R, q /∈ p

}
, p ⊆ R prime ideal

⇒ Rp = S−1R, where S = R \ p
Example: K [x ]〈x〉 =

{
f
g
∈ K(x) | g(0) 6= 0

}

Rf :=
{

p
f k
| p ∈ R, k ∈ N0

}
, f ∈ R \ {0}

⇒ Rf = S−1R, where S = [f ]
Example: K [x ]x = K [x , x−1]

Quot(R) :=
{

p
q
| p, q ∈ R, q 6= 0

}
⇒ Quot(R) = S−1R,

where S = R \ {0}
Example: Quot(K [x ]) = K(x)
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Basic properties
Let S be a multiplicative set in a commutative domain R .

Lemma

(a) 1S−1R = 1
1

= s
s for all s ∈ S .

(b) 0S−1R = 0
1

= 0
s for all s ∈ S .

(c) r
s = 1 if and only if s = r .

(d) r
s = 0 if and only if r = 0.

(e) r
s = tr

ts for all t ∈ R such that ts ∈ S .

(f) − r
s = −r

s .

(g) R → S−1R, r 7→ r
1
is an injective homomorphism.

(h) S−1R is a domain.

(i) Every ideal in S−1R is the extension of an ideal in R .

(j) If R is Noetherian/Artinian/PID, so is S−1R .

(k)
{
prime ideals in S−1R

} 1:1←→ {prime ideals in R which do not meet S}
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The hierarchy of Ore localizations: localization of. . .

commutative domains

commutative rings

commutative

arbitrary domains

domains
arbitrary rings
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Axiomatic de�nition of left Ore localization

De�nition

Let S be a multiplicative set in R . A ring RS and an injective
homomorphism ϕ : R → RS are a left Ore localization of R at S if:

(1) For all s ∈ S , ϕ(s) is invertible in S−1R .

(2) For all x ∈ RS , there exist s ∈ S and r ∈ R such that x = ϕ(s)−1ϕ(r).

Theorem

Let S be a multiplicative set in R . If a left Ore localization of R at S
exists, then it is unique up to isomorphism.
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�Working� with non-commutative fractions

Let S be a multiplicative set in R such that the left Ore localization of R at
S exists. For brevity we write a �left fraction� ϕ(s)−1ϕ(r) simply as s−1r .

Multiplication

Take two left fractions s−11 r1, s
−1
2 r2 ∈ RS . Their product s

−1
1 r1 · s−12 r2 must

again be writable as a left fraction, thus there exist s̃ ∈ S and r̃ ∈ R such
that

r1s
−1
2 = s̃−1r̃ ⇔ s̃r1 = r̃ s2,

then we get
s−11 r1s

−1
2 r2 = s−11 s̃−1r̃ r2 = (s̃s1)−1r̃ r2.

Corollary

If the left Ore localization of R at S exists, then S is a left Ore set in R .
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Left Ore sets

De�nition

Let S be a subset of R .

S satis�es the left Ore condition in R if

∀ s ∈ S , r ∈ R ∃ s̃ ∈ S , r̃ ∈ R : s̃r = r̃ s.

Equivalently: ∀ s ∈ S , r ∈ R : Sr ∩ Rs 6= ∅.
left Ore set := multiplicative set + left Ore condition

Consequences of the left Ore condition on S in R

Any right fraction rs−1 can be rewritten as a left fraction s̃−1r̃ .

Finitely many elements have a common left multiple in S .
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Construction of the left Ore localization I

Theorem (Ore 1931)

Let S be a left Ore set in R .

(a) The following is an equivalence relation on S × R :

(s1, r1) ∼ (s2, r2) ⇔ ∃ s̃ ∈ S , r̃ ∈ R : s̃s2 = r̃ s1 and s̃r2 = r̃ r1

Write the class of (s, r) wrt. to ∼ again as (s, r) or as s−1r .

(b) S−1R := ((S × R)/∼,+, ·) is a ring with the operations

+ : S−1R × S−1R → S−1R, (s1, r1) + (s2, r2) := (s̃s1, s̃r1 + r̃ r2),

where s̃ ∈ S and r̃ ∈ R satisfy s̃s1 = r̃ s2, and

· : S−1R × S−1R → S−1R, (s1, r1) · (s2, r2) := (s̃s1, r̃ r2),

where s̃ ∈ S and r̃ ∈ R satisfy s̃r1 = r̃ s2.
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Construction of the left Ore localization II

De�nition

The map
ρS ,R : R → S−1R, r 7→ (1, r),

is called structural homomorphism or localization map of S−1R .

Lemma

The pair (S−1R, ρS,R) is the left Ore localization of R at S .

Corollary

Let S be a multiplicative subset of R . The following are equivalent:

(1) The left Ore localization of R at S exists.

(2) S is a left Ore set in R .
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Basic properties

Lemma

(a) 1S−1R = (1, 1) = (s, s) for all s ∈ S .

(b) 0S−1R = (1, 0) = (s, 0) for all s ∈ S .

(c) (s, r) = 1 if and only if s = r .

(d) (s, r) = 0 if and only if r = 0.

(e) (s, r) = (ts, tr) for all t ∈ R such that ts ∈ S .

(f) −(s, r) = (s,−r).

(g) R → S−1R, r 7→ (1, r) is an injective homomorphism.

(h) S−1R is a domain.

(i) Every left ideal in S−1R is the extension of a left ideal in R .

(j) If R is left Noetherian/Artinian/PID, so is S−1R .
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The old good Weyl algebra

The 1st polynomial Weyl algebra

A1(K ) = K 〈x , ∂ | ∂x = x∂ + 1〉

or, stressing that we work over the ring of polynomial coe�cients

K [x ]〈∂ | ∂x = x∂ + 1〉 = K [x ][∂; 1, ∂∂x ]

where the latter is the formulation via Ore extension.

Note that A1 is a Noetherian domain.

The 1st rational Weyl algebra

B1(K ) = K (x)〈∂ | ∂x = x∂ + 1〉 = K (x)[∂; 1, ∂∂x ]

It is the Ore localization of A1 at the Ore set S = K [x ] \ {0}, and thus
B1
∼= S−1A1.
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The old good Weyl algebra I

Lemma

The following are left Ore sets in A1:

S = K [x ] \ {0} and K [∂] \ {0}

⇒ S−1A1 = B1 := K (x)〈∂ | ∂f = f ∂ + df
dx for all f ∈ K (x)〉

[x ] and [∂]

⇒ [x ]−1A1
∼= K 〈x , x−1, ∂ | ∂x = x∂ + 1, ∂x−1 = x−1∂ + x−2〉

(the �rst �Laurent Weyl algebra�)

V := [x , ∂] = [[x ] ∪ [∂]]
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Dimension of the space of holomorphic solutions

Theorem (Cauchy-Kowalewska-Kashiwara)

Let K = C, D = An(C) the n-th Weyl algebra, I ⊂ D a left ideal such
that D/I is a holonomic D-module (i. e. GKdimD/I = n).
Moreover, let Sing(I) be the singular locus of I and U a simply connected
domain in Cn \ Sing(I). Consider the system of di�erential equations
{o • f = 0 | o ∈ I} for holomorphic functions f on U. Then the dimension
of the complex vector space of solutions to this system is equal to the
holonomic rank of D/I.

... where the holonomic rank of D/I (or of a �n. pres. D-module)
is nothing else but

dimK(x) S
−1D/S−1I = dimK(x) Bn/BnI

for S = K [x ] \ {0}. This value is computable as well as Sing(I).
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Multiplicative inverses

Let (s, r) ∈ S−1R , then its additive inverse is given by (s,−r).

What about multiplication?
How can we describe U(S−1R) :=

{
a ∈ S−1R | a invertible/unit

}
?

Some immediate su�cient conditions:

If r ∈ S , then (s, r) is invertible with (s, r)−1 = (r , s).

If r is a unit in R , then (s, r) is invertible with (s, r)−1 = (1, r−1s).

But S−1R may contain more units:

Example

Let K be a �eld. Consider x
1
in [x2]−1K [x ]. Now x /∈ [x2] and x is not a

unit in K [x ], but x
1
is invertible with

(
x
1

)−1
= x

x2
.
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Left saturation closure

De�nition

Let P be a subset of R .

P is called left saturated if for all a, b ∈ R : ab ∈ P ⇒ b ∈ P .

The left saturation closure of P in R is

LSat(P) := {r ∈ R | ∃w ∈ R : wr ∈ P} ⊇ P.

Lemma

(a) P is left saturated ⇔ P = LSat(P).

(b) If P 6= ∅: U(R) ⊆ LSat(P).
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The old good Weyl algebra II
Consider the �rst polynomial Weyl algebra A1 = K 〈x , ∂ | ∂x = x∂ + 1〉.
Note that U(A1) = K \ {0} is contained in any of the following closures,
but is sometimes omitted for brevity.

Example

LSat([xn]) = LSat([x ]) = [x ] and LSat(K [x ] \ {0}) = K [x ] \ {0}.

De�nition

The Euler operator in A1 is θ := x∂ = ∂x − 1.

Example

Let V := [x , ∂] and Θ := [θ + Z] = [{x∂ + z | z ∈ Z}].
(a) V and Θ are left Ore sets in A1. (non-trivial)

(b) LSat(V ) = LSat(Θ). (easy)

(c) LSat(V ) = [(θ + Z) ∪ {x , ∂}]. (⊆ highly non-trivial)
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The units of the localized ring

Note that (s, r) = (s, 1) · (1, r).

Theorem

Let (s, r) ∈ S−1R . The following are equivalent:

(1) (s, r) ∈ U(S−1R).

(2) (1, r) ∈ U(S−1R) ⇔ r ∈ ρ−1(U(S−1R)).

(3) r ∈ LSat(S) ⇔ ∃w ∈ R : wr ∈ S .

(4) Rr ∩ S 6= ∅.

⇒ LSat(S) is the set of all elements of R that become invertible in the
localization S−1R
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Localization at left saturation

Reminder

LSat(S) := {r ∈ R | ∃w ∈ R : wr ∈ S}

Lemma

If S is a left Ore set in R , then LSat(S) is a saturated left Ore set in R .

Theorem

S−1R ∼= LSat(S)−1R as rings (and K -algebras, if applicable) via

S−1R → LSat(S)−1R, (s, r) 7→ (s, r).

⇒ LSat(S) is the canonical representative of the localization at S
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The old good Weyl algebra III

De�nition

The skew �eld of fraction of the Weyl algebra is

D1 = (A1 \ {0})−1A1 =

{
p

q
| p ∈ A1, q ∈ A1 \ {0}

}
.

Theorem (Makar-Limanov 1983)

D1 contains a free algebra generated by (∂x , 1) and (∂x , 1) · (1− ∂, 1).

The two generators are also contained in LSat(S)−1A1, where

S := [Θ ∪ {∂ − 1}] = [(θ + Z) ∪ {∂ − 1}] = [(x∂ + Z) ∪ {∂ − 1}].

For all i ∈ Z we have

(θ + i + 1)(x∂2 − x∂ + (i + 2)∂ − i) = (∂ − 1)(θ + i)(θ + i + 1) ∈ S ,

thus LSat(S) contains the (irreducible) element x∂2 − x∂ + (i + 2)∂ − i .
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Local closure

De�nition

Let S be a left Ore set in R and L a left ideal in R . Then

S−1L :=
{

(s, r) ∈ S−1R | r ∈ L
}

is the localization of L at S .

De�nition

The local closure or S-closure of a left ideal L in R is

LS := ρ−1(S−1L).

Lemma

LS = {r ∈ R | ∃s ∈ S : sr ∈ L} =: LSatS(L).
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Application of local closure

Weyl algebra vs. di�erential equations

r :=
n∑

i=0

pi∂
i ∈ A1 with pi ∈ K [x ] ! ODE

n∑
i=0

pi f
(i)(x) = 0

A solution f of such an ODE can only have a singularity at roots of pn.
But: there can be roots of pn where no solution is singular (apparent
singularities).

Desingularization

Find t ∈ 〈r〉K [x]\{0} such that as many apparent singularities of r as
possible are no longer apparent singularities of t.

Example (Barkatou, Maddah 2015)

r = x∂2 − (x + 2)∂ + 2 ∈ A1(Q) ⇒ 〈r〉K [x]\{0} = 〈r , ∂4 − ∂3〉
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Partial classi�cation of Ore localizations

Most common types of Ore localizations

Let K be a �eld, R a K -algebra and S a left Ore set in R . The set S (and
S−1R) is called. . . if. . .

Monoidal: S is generated as a monoid by countably many elements
Example: [x + 1] ⊆ K [x ], Θ = [θ + Z] ∈ A1.

Geometric: Let K [x ] = K [x1, . . . , xn], p ⊆ K [x ] prime, S = K [x ] \ p
Example: K [x ] \ 〈x〉 ⊆ K [x ] ⊆ A1.

Rational: T ⊆ R is a K -subalgebra, S = T \ {0}
Special case: R is generated by x = {x1, . . . , xn} and T is generated
by a subset of x ⇒ S is essential rational
Example: K [x ] \ {0} ⊆ K [x , y ] ⊆ A2.
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Example: local closure at Θ in A1

Task

Let L be a left ideal in A1. Determine LΘ, where Θ = [θ + Z] = [x∂ + Z].

Lemma

Let S be a left Ore set in R and I a left ideal in R , then

I S = I LSat(S).

⇒ LΘ = L[x ,∂] since LSat([x , ∂]) = LSat(Θ).

New Task

Let L be a left ideal in A1. Determine LV , where V = [x , ∂].
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Thank you for your attention!

The latest version of Singular (including olga.lib) is available at:
http://www.singular.uni-kl.de
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Example: local closure at Θ in A1

Task

Let L be a left ideal in A1. Determine LV , where V = [x , ∂].

Knowledge from D-module theory

Determining L[x] is algorithmic (Oaku, Takayama, Walther 1999).

Together with the Fourier automorphism F : A1 → A1 induced by
x 7→ −∂ and ∂ 7→ x , determining L[∂] is also algorithmic via

L[∂] = F−1(F(L)[x]).

Goal

Reduce the computation of LV to computations of the form L[x] and L[∂].
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Example: local closure at Θ in A1

Lemma

Let S and T be left Ore sets in R and L a left ideal in R . Then [S ∪ T ] is
a left Ore set in R and

L = L[S∪T ] ⇔ L = LS and L = LT .

Corollary

Let R be Noetherian, then in the chain of left ideals

L ⊆ LS ⊆ (LS)T ⊆ ((LS)T )S ⊆ . . . ⊆ L[S∪T ].

there can only be �nitely many strict inclusions. By the lemma above, at
the �rst non-strict inclusion we have already reached L[S∪T ].
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Localization: the paradox of theory vs practice

In theory, localization makes life easier:

a localized ring is bigger and contains more invertible elements than
the original ring, thus less proper ideals

a localized ring is deeply connected to the original ring via ρS ,R

the structure of the category of S−1R-modules is much easier than
the structure of the category of R-modules

In practice (i.e. computer algebra) manipulations with objects in the
localization S−1R are generally much more complicated than with
objects in R .

Proof by bad example.

What is 3 + 5? What is 1
3

+ 1
5

? See.
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G -algebras (PBW algebras, algebras of solvable type)

De�nition

For a �eld K , n ∈ N and 1 ≤ i < j ≤ n consider the constants ci ,j ∈ K ∗

and polynomials di ,j ∈ K [x1, . . . , xn]. The K -algebra

A := K 〈x1, . . . , xn | {xjxi = ci ,jxixj + di ,j : 1 ≤ i < j ≤ n}〉

is called a G -algebra, if:

(1) there exists a monomial total well-ordering < on K [x1, . . . , xn] such
that for any 1 ≤ i < j ≤ n either di ,j = 0 or the leading monomial of
di ,j with respect to < is smaller than xixj .

(2) {xα11 · . . . · xαn
n | αi ∈ N0} is a K -basis of A.

Remark

G -algebras are Noetherian domains.

There exists a Gröbner basis theory for G -algebras plus
implementation (most extensive in Singular:Plural).
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Examples of G -algebras

Weyl algebras (K 〈x1, . . . , xn, ∂1, . . . , ∂n | ∀i : ∂ixi = xi∂i + 1〉)
Shift algebras (K 〈x1, . . . , xn, s1, . . . , sn | ∀i : sixi = (xi + 1)si 〉)
q-Weyl algebras (K 〈x , ∂ | ∀i∃qi ∈ K ∗ : ∂ixi = qixi∂i + 1〉)
q-Shift algebras (K 〈x , s | ∀i∃qi ∈ K ∗ : sixi = qixi si 〉)
Integration algebras (K 〈x , I | ∀i : Iixi = xi Ii + I 2i 〉)
Universal enveloping algebras of �nite-dimensional Lie algebras

Many quantum groups

Tensor products of G -algebras over the common ground �eld

. . .

Recent results (Heinle, Levandovskyy, Bell)

Factorization in G -algebras is possible (�nitely many cases) and
implemented in ncfactor.lib in Singular:Plural.
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Types of computable Ore localizations

At the moment we can deal with the following situations:

Let K be a �eld and R a G -algebra over K , S a left Ore set in R .

Monoidal: S is generated as a monoid by �nitely many elements contained
in a commutative polynomial subring of R generated by a subset of the
variables
Examples: [x ]−1A1, [∂ − 1]−1A1, not [x , ∂]−1A1

Geometric: Let T = K [x1, . . . , xn] ⊆ R , p ⊆ T prime, S = T \ p
Example: (K [x ] \ 〈x − 42〉)−1A1

Rational: T ⊆ R is a sub-G -algebra generated by a subset of the variables,
S = T \ {0}
Example: (K [x ] \ {0})−1A1
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Algorithmic framework for algebras of operators

OLGA = Ore-localized G -algebra

olga.lib for Singular:
locStatus(int, def)

testLocData(int, def)

isInS(poly, int, def)

fracStatus(vector, int, def)

testFraction(vector, int, def)

leftOre(poly, poly, int, def)

rightOre(poly, poly, int, def)

convertRightToLeftFraction(vector, int, def)

convertLeftToRightFraction(vector, int, def)

addLeftFractions(vector, vector, int, def)

multiplyLeftFractions(vector, vector, int, def)

areEqualLeftFractions(vector, vector, int, def)

isInvertibleLeftFraction(vector, int, def)

invertLeftFraction(vector, int, def)

Available as part of the Singular distribution.
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Examples I
Left-to-right conversion in the second rational q-shift algebra A:

LIB "olga.lib";

ring Q = (0,q),(x,y,Qx,Qy),dp; // commutative polynomial ring

matrix C[4][4] = UpOneMatrix(4); // defines a matrix of

C[1,3] = q; C[2,4] = q; // non-commutative relations

def A = nc_algebra(C,0); // creates A from Q

setring A;

intvec v = 1,2; // rational localization at K[x,y]\{0}

poly f = Qx+Qy; poly g = x^2+1;

vector frac = [g,f,0,0];

vector result = convertLeftToRightFraction(frac,2,v);

print(result);

-> [x^2+1,Qx+Qy,(q^4)*x^2*Qx+x^2*Qy+(q^2)*Qx+(q^2)*Qy,x^4+(q^2+1)*x^2+(q^2)]

Now result contains the left representation (x2 + 1)−1(Qx + Qy ) of frac
as well as its newly computed right representation
(q4x2Qx + x2Qy + q2Qy ) · (x4 + (q2 + 1)x2 + q2)−1. Plausibility check:

f * result[4] == g * result[3];

-> 1

isInS(result[4],2,v);

-> 1
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Examples II
Basic arithmetic with two left fractions in a monoidal localization of the
second Weyl algebra A2:

LIB "olga.lib";

ring R = 0,(x,y,Dx,Dy),dp; // commutative polynomial ring

def A2 = Weyl(); setring A2; // creates A2 from R

poly g1 = x+3; poly g2 = x*y+y; list L = g1,g2;

vector frac1 = [g1,Dx,0,0]; vector frac2 = [g2,Dy,0,0];

vector result = addLeftFractions(frac1, frac2, 0, L); print(result);

-> [x^2*y+4*x*y+3*y,x*y*Dx+y*Dx+x*Dy+3*Dy]

Thus, the sum is (x2y + 4xy + 3y)−1(xy∂x + y∂x + x∂y + 3∂y ).

result = multiplyLeftFractions(frac1, frac2, 0, L); print(result);

-> [x^3*y^2+5*x^2*y^2+7*x*y^2+3*y^2,x*y*Dx*Dy+y*Dx*Dy-y*Dy]

This product is (x3y2 + 5x2y2 + 7xy2 + 3y2)−1(xy∂x∂y + y∂x∂y − y∂y ).

result = multiplyLeftFractions(frac2, frac1, 0, L); print(result);

-> [x^2*y+4*x*y+3*y,Dx*Dy]

In this order, the product is (x2y + 4xy + 3y)−1(∂x∂y ).
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The latest version of Singular (including olga.lib) is available at:
http://www.singular.uni-kl.de
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