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m,

)'é—f—glél +g6; =0
X+ 00y + gt =0
new variables x; = x + #1601, x0 = x + £»>0>, u = x in the matrix form.

The system of OD equations is rewritten in the
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2, & _g7 |« 0
0 dt + £2 - 82 0

u

Notably: this system does not depend on the masses m;!

Viktor Levandovskyy (Uni Kassel) Torsion, Localization and Applications



Since g is the gravitarional constant and /7, {> are fixed, we treat them as
parameters, i.e. our ground field is Q(g, {1, ¢2).

Since nothing depends on time t, we have a system of ODEs with constant
coefficients, rewritten as a matrix over the algebra of operators

Q(ga El ) 62)[df]

Computations show that the system is (strongly) controllable; and there’s
the left inverse matrix of the so-called image representation of the system:

4 J4
[gz(ﬁllffz) _gz(elszz) O]

We see that the result is valid, provided ¢; # /5!
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Let us rerun the computation for the case /1 = ¢, =: ¢!
Over system, written as a matrix over the algebra of operators Q(g, ¢)[d¢].
2 g _&
di +5% , 0 . 1
0 di +7 —%
is not controllable anymore: there is a nonzero torsion submodule!

It is annihilated by the ideal (¢d? + g) meaning there are autonomous
elements like the difference x; — x» of the positions of the pendula
(relative to the bar).
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Recall some results from Algebra

Let R be a ring (associative, with 1).

o A free module R™: set of (column) vectors of length m with entries
from R v ={[r,...,rm]” = . rie;, where {e;} form a basis of R
analogy with vector spaces: R™ is closed under addition and under the
multiplication by "scalar" elements from R.

@ A submodule of R™ is an analogue to the subspace: if it is generated

by the finite set of vectors; put them into a matrix U.

Pass to the factor-module M = R™ /U, which is finitely generated by
[e1], .- ., [em] with [e] = e+ U.

If R = K is a field, we are back in the course of linear algebra

Every nonzero submodule is free; every nonzero factor-module is free.

Over a general ring R:
Free = stably free = projective = flat = torsion-free.
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The first appearance of torsion

Let R be a PID (principal ideal domain) like Z or K[x]: there are no
zero-divisors except 0.

Main Theorem on finitely generated modules over PID

Jk € Ng,3t € Ng Jay,...,ax #Osuch that a; | ap | ... | ak

M= R/(a) x - x R/{ak) x R
a ... 0
let D:=|: ... :|,then M= RK/D@® R and t(M) := RX/D.
0 ... dk

For a domain R, m € M is a torsion element, if 30 £ rec R:r-m=0y.
The torsion submodule t(M) of M consists of torsion elements.

Dichotomy

M is called torsion module, if ¢(M) = M, and torsion-free module, if
t(M) = {0}. (In System theory reflected by controllable/autonomous.)
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Localization of commutative domains

Convention

From now on: let R be a domain (no zero-divisors).

Definition
A subset S of R is called a multiplicative set if

e 0¢S,

e leSand

e S is multiplicatively closed, thatis, Vs,t € S:s-t € S.
Notation: [S] := the smallest multiplicative superset of S.
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Construction

Theorem (Classical)

Let S be a multiplicative set in a commutative domain R. Then
ST'R:= {g|seS,reR}:{s*1r]seS,reR}

is a commutative domain, where

@ L =2 jfand only if sirn = sy,

S1 S2
r rp _ Sari+sir
o L 42— 2nian
i S2 5152
I 7 nr
o L. _ nr
s1 S 515
Example

R=7,5=7Z\{0} = S 'R={L|rs€Zs#0}=Q
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Commutative examples |

Let R be a commutative domain and K a field.

Quotient fields

S=R\{0} = Quot(R):==S'R={f|r,s€R,s#0} is a field.
e Quot(Z) =Q
e Quot(K[x]) = K(x)

@ Quot({holomorphic functions}) = {meromorphic functions}

Origin of the name: algebraic geometry

Leta€ K"and m:= (x; —a1,...,%x, — an) C K[x1,...,x5] =: P. Then
S := R\ m is a multiplicative set in P and Py := S~!P describes the
“local” behavior near a.

Laurent polynomials
For [x] = {x* | keNo}: [x]'K[x] = K[x,x 1] € K(x)
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Commutative examples

R, = {5 | p,g € R, q §ép}, p C R prime ideal
= R, = ST'R, where S =R\ p
Example: K[x](xy = {fr € K(x) | g(0) # 0}

/

/m\ QUOt(R) ::{% |P,q€R,q7£0}
S o o L
/ Example: Quot(K|[x]) = K(x)

\

Re:={% |peR keNo}, feR\{0}
= Rr = S 'R, where S = [f]
Example: K[x]x = K[x,x ]
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Basic properties

Let S be a multiplicative set in a commutative domain R.

(a) 1g-15 = % =2 foralls € S.
Os-ig=2="2forallseS.

=1 ifand only ifs=r.

=0 ifand only if r = 0.

= forall t € R such that ts € S.

ts

0l Lis ulx

r _ —r

)
)
)
)
) —5=%-
)
)
)
)
)

R— SR r— 1 Is an injective homomorphism.
S7IR is a domain.

Every ideal in S™'R is the extension of an ideal in R.
If R is Noetherian/Artinian/PID, so is S™'R.
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The hierarchy of Ore localizations: localization of. ..

arbitrary rings

domains commutative

arbitrary domains commutative rings

commutative domains
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Axiomatic definition of left Ore localization

Definition

Let S be a multiplicative set in R. A ring Rs and an injective
homomorphism ¢ : R — Rs are a left Ore localization of R at S if:
(1) Forall s € S, ¢(s) is invertible in S71R.

(2) For all x € Rs, there exist s € S and r € R such that x = np(s)_lgo(r).j

Theorem

Let S be a multiplicative set in R. If a left Ore localization of R at S
exists, then it is unique up to isomorphism.
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“Working” with non-commutative fractions

Let S be a multiplicative set in R such that the left Ore localization of R at
S exists. For brevity we write a “left fraction” ((s)~1p(r) simply as s7r.

Multiplication

Take two left fractions 51_1r1,52_1r2 € Rs. Their product sl_lrl -52_1r2 must
again be writable as a left fraction, thus there exist § € S and 7 € R such

that
1 ~—1

ns, =§'F <& 5n=rs,

then we get
=i =il e = V=l g
S, ns, n==s "5 Ffrnp=/(55)"Fn.

Corollary
If the left Ore localization of R at S exists, then S is a left Ore set in R.
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Left Ore sets

Definition
Let S be a subset of R.
@ S satisfies the left Ore condition in R if

VseSrecR 33cS,FeR:

e
=
I
~2
0

Equivalently: Vse S,re R: SrnRs # (.
o left Ore set := multiplicative set + left Ore condition

Consequences of the left Ore condition on S in R

@ Any right fraction rs~! can be rewritten as a left fraction 5717,

@ Finitely many elements have a common left multiple in S.
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Construction of the left Ore localization |

Theorem (Ore 1931)
Let S be a left Ore set in R.
(a) The following is an equivalence relation on S x R:

(51,r1)~(52,r2) =4 3565,?6 R: S, =7sy andsrp =rn

Write the class of (s, r) wrt. to ~ again as (s, r) or as s r.

(b) SR :=((S x R)/~,+,-) is a ring with the operations
+:S'Rx SR> SR, (s1,n)+ (s2, ) := (851,51 + Fr2),
where § € S and F € R satisfy 5s; = Fsp, and
- ST'RxST'R— SR, (s1,n) - (s2, ) := (8s1,7n),

where 5 € S and F € R satisfy 5r, = Fsp.

Viktor Levandovskyy (Uni Kassel) Torsion, Localization and Applications



Construction of the left Ore localization |l

Definition
The map
psr:R— SR, re—(1,r),

is called structural homomorphism or localization map of S~!R.

Lemma
The pair (S71R, ps.r) is the left Ore localization of R at S.

Corollary

Let S be a multiplicative subset of R. The following are equivalent:
(1) The left Ore localization of R at S exists.

(2) S is a left Ore set in R.
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Basic properties
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The old good Weyl algebra

The 1st polynomial Weyl algebra
A1(K) = K(x,0 | 0x = x0 + 1)

or, stressing that we work over the ring of polynomial coefficients

K[x](0 | 0x = x0+1) = K[X][0;1, 2

where the latter is the formulation via Ore extension.

Note that A; is a Noetherian domain.

The 1st rational Weyl algebra

Bi(K) = K(x)(0| dx =xd + 1) = K(x)[0;1, &

It is the Ore localization of A; at the Ore set S = K|[x] \ {0}, and thus
B = 5_1A1.
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The old good Weyl algebra |

Lemma
The following are left Ore sets in A;:
e S=K][x]\ {0} and K[0] \ {0}
= S7IA; = By := K(x)(0 | Of = fO + 9 for all f € K(x))

o [x] and [0]

= [X]TAL 2 K(x,x71,0 | Ox = x0 + 1,0x 1 = x710 + x72)
(the first “Laurent Weyl algebra”)

o V:=I[x,9] =[[x]U[d]]
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Dimension of the space of holomorphic solutions

Theorem (Cauchy-Kowalewska-Kashiwara)

Let K =C, D = A,(C) the n-th Weyl algebra, T C D a left ideal such
that D/Z is a holonomic D-module (i. e. GKdimD/Z = n).

Moreover, let Sing(Z) be the singular locus of T and U a simply connected
domain in C" \ Sing(Z). Consider the system of differential equations
{oef =0|0 €I} for holomorphic functions f on U. Then the dimension
of the complex vector space of solutions to this system is equal to the
holonomic rank of D/T.

.. where the holonomic rank of D/Z (or of a fin. pres. D-module)
is nothing else but

dimg(x) ST'D/ST'T = dimy(x) Bn/BnT

for S = K|[x] \ {0}. This value is computable as well as Sing(Z).
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Multiplicative inverses

Let (s,r) € SR, then its additive inverse is given by (s, —r).

What about multiplication?
How can we describe U(SR) := {a € S7'R | a invertible/unit}?
Some immediate sufficient conditions:

o If r €S, then (s, r) is invertible with (s,r)~1 = (r,s).
o If ris a unit in R, then (s, r) is invertible with (s,r)™! = (1,rs).

But S~'R may contain more units:

Example

Let K be a field. Consider ¥ in [x*]*K[x]. Now x ¢ [x°] and x is not a
unit in K[x], but § is invertible with (’11)_1 =%
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Left saturation closure

Definition
Let P be a subset of R.

@ P is called left saturated if forall a,bc R:abe P = b e P.
@ The left saturation closure of P in R is

LSat(P):={re R|3we R:wre P} D P.

Lemma
(a) P is left saturated < P = LSat(P).
(b) I P #0: UIR) C LSat(P).
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The old good Weyl algebra Il

Consider the first polynomial Weyl algebra A; = K(x,0 | 0x = x0 + 1).
Note that U(A;1) = K \ {0} is contained in any of the following closures,
but is sometimes omitted for brevity.

Example
LSat([x"]) = LSat([x]) = [x] and LSat(K[x]\ {0}) = K[x] \ {0}.

Definition
The Euler operator in A; is 6§ := x0 = Ox — 1.

Example

Let V:=[x,0] and © := [0 + Z]| = [{x0+ z | z € Z}].

(a) V and © are left Ore sets in A;. (non-trivial)
(b) LSat(V) = LSat(©). (easy)
(c) LSat(V) =[(0+Z) U {x,0}]. (C highly non-trivial)

4
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The units of the localized ring

Note that (s,r) = (s,1) - (1, r).

Theorem

Let (s,r) € STIR. The following are equivalent:
(1) (s,r) € U(S7IR).

(2) 0, e U(STIR) & repH(U(STIR)).
(3) relSat(S) & IweR:wres.

(4) Rrn'S # 0.

= LSat(S) is the set of all elements of R that become invertible in the
localization S7'R
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Localization at left saturation

Reminder

LSat(S) :={re R|3w e R:wre S}

Lemma
If S is a left Ore set in R, then LSat(S) is a saturated left Ore set in R.

Theorem
SR =2 LSat(S) 'R as rings (and K-algebras, if applicable) via

SR = LSat(S) 'R, (s,r) (s, 1)

= LSat(S) is the canonical representative of the localization at S
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The old good Weyl algebra Il

Definition
The skew field of fraction of the Weyl algebra is

Dy = (A1\{0})—1A1 = {g | pEA, g€ Al\{O}}.

Theorem (Makar-Limanov 1983)
Dy contains a free algebra generated by (0x,1) and (0x,1)- (1 —0,1).

The two generators are also contained in LSat(S)"1A;, where
S=0OuU{o-1}]=[0+2)U{0—-1}] =[(x0+Z)U {0 —1}].
For all i € Z we have
O+i+1)(xP?=x0+(+2)0-)=0O@-D)O+NO+i+1)€S,

thus LSat(S) contains the (irreducible) element x9% — x0 + (i +2)0 — i.
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Local closure

Definition
Let S be a left Ore set in R and L a left ideal in R. Then
S'L:={(s,r)eS'R|reL}

is the localization of L at S.

Definition
The local closure or S-closure of a left ideal Lin R is

L5 = p7}(S7tL).

Lemma

L°={reR|3seS:srel}=:LSats(L).
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Application of local closure

Weyl algebra vs. differential equations

ro= Zpia" € A; with p; € K[x] «~ ODE Zpif(i)(x) =0

A solution f of such an ODE can only have a singularity at roots of p,,.

But: there can be roots of p, where no solution is singular (apparent
singularities).

Desingularization

Find t € (r)KXI\®} such that as many apparent singularities of r as
possible are no longer apparent singularities of t.

Example (Barkatou, Maddah 2015)
r=x0?—(x+2)0+2cA(Q) = (nNKKM% = (r a* - 3%
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Partial classification of Ore localizations

Most common types of Ore localizations

Let K be a field, R a K-algebra and S a left Ore set in R. The set S (and

S7LIR) is called. . . if. ..

Monoidal: S is generated as a monoid by countably many elements
Example: [x +1] C K[x], © = [0 + Z] € A;.

Geometric: Let K[x] = K[x1,...,xa], p C K[x] prime, S = K[x] \ p
Example: K[x]\ (x) C K[x] C A;.

Rational: T C R is a K-subalgebra, S = T \ {0}
Special case: R is generated by x = {xi,...,x,} and T is generated

by a subset of x = S is essential rational
Example: K[x]\ {0} C K[x,y] C As.
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Example: local closure at © in Ay

Task
Let L be a left ideal in A;. Determine L, where © = [0 + Z] = [x0 + Z].

Lemma
Let S be a left Ore set in R and | a left ideal in R, then

/S — /Lsat(S)'

= 1© = [%9] since LSat([x, d]) = LSat(©).

New Task
Let L be a left ideal in A;. Determine LY, where V = [x, d].
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Thank you for your attention!

4 SINGULAR olural

The latest version of SINGULAR (including olga.lib) is available at:
http://www.singular.uni-kl.de
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Example: local closure at © in Ay

Task
Let L be a left ideal in A;. Determine LY, where V =[x, d].

Knowledge from D-module theory

Determining LI is algorithmic (Oaku, Takayama, Walther 1999).

Together with the Fourier automorphism F : A; — A; induced by
x = —d and 8 — x, determining LI is also algorithmic via

L = FYF(L)M).

Goal
Reduce the computation of LY to computations of the form L and L], J
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Example: local closure at © in Ay

Lemma

Let S and T be left Ore sets in R and L a left ideal in R. Then [SU T] is
a left Ore set in R and

L=t « | —[SandL=1L"T.

Corollary
Let R be Noetherian, then in the chain of left ideals

LC LS C (LS)T C ((LS)T)S C...C L[SUT]'

there can only be finitely many strict inclusions. By the lemma above, at
the first non-strict inclusion we have already reached LISVT].
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Localization: the paradox of theory vs practice

In theory, localization makes life easier:

@ a localized ring is bigger and contains more invertible elements than
the original ring, thus less proper ideals

@ a localized ring is deeply connected to the original ring via ps g

o the structure of the category of S™1R-modules is much easier than
the structure of the category of R-modules

In practice (i.e. computer algebra) manipulations with objects in the
localization S~ R are generally much more complicated than with
objects in R.

Proof by bad example.

What is 3 +57 What is % + %? See. O
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G-algebras (PBW algebras, algebras of solvable type)
Definition
For a field K, n € N and 1 </ < j < n consider the constants ¢;; € K*
and polynomials d;j € K[xi,...,xp]. The K-algebra

A= K(xi,...,xn | {xxi = cijxixp+dij: 1 <i<j<n})
is called a G-algebra, if:

(1) there exists a monomial total well-ordering < on K|[xq,. .., xs] such
that for any 1 </ < j < n either d; j = 0 or the leading monomial of
d; j with respect to < is smaller than x;x;.

(2) {x{"-...- x5 | aj € No} is a K-basis of A.

Remark
@ G-algebras are Noetherian domains.

@ There exists a Grobner basis theory for G-algebras plus
implementation (most extensive in SINGULAR:PLURAL).
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Examples of G-algebras

o Weyl algebras (K(x1,...,Xn,01,...,0, | Vi:0ix; = x;0; + 1))
Shift algebras (K(x1,...,Xn,S1,---,5n | Vi :sixi = (x; + 1)s;))
g-Weyl algebras (K (x,0 | Vidgi € K* : 0ixi = qix;i0;i + 1))
g-Shift algebras (K(x,s | Vidq; € K* : six; = qijx;s;))
Integration algebras (K{(x, I | Vi : lix; = x;l; + 1))

Universal enveloping algebras of finite-dimensional Lie algebras
Many quantum groups

Tensor products of G-algebras over the common ground field

Recent results (Heinle, Levandovskyy, Bell)

Factorization in G-algebras is possible (finitely many cases) and
implemented in ncfactor.1lib in SINGULAR:PLURAL.
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Types of computable Ore localizations

At the moment we can deal with the following situations:
Let K be a field and R a G-algebra over K, S a left Ore set in R.

Monoidal: S is generated as a monoid by finitely many elements contained
in a commutative polynomial subring of R generated by a subset of the
variables
Examples: [x] A, [0 — 1] Ay, not [x, 9] 1A

Geometric: Let T = K[x1,...,x)] CR, pC T prime, S=T \ p
Example: (K[x]\ (x —42))"1A;

Rational: T C R is a sub-G-algebra generated by a subset of the variables,
S=T\{0}

Example: (K[x]\ {0})~1A;
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Algorithmic framework for algebras of operators

OLGA = Ore-localized G-algebra

olga.lib for SINGULAR:

locStatus(int, def)

testLocData(int, def)

isInS(poly, int, def)

fracStatus(vector, int, def)
testFraction(vector, int, def)

leftOre(poly, poly, int, def)

rightOre(poly, poly, int, def)
convertRightToLeftFraction(vector, int, def)
convertLeftToRightFraction(vector, int, def)
addLeftFractions(vector, vector, int, def)
multiplylLeftFractions(vector, vector, int, def)
areEqualleftFractions(vector, vector, int, def)
isInvertibleLeftFraction(vector, int, def)
invertLeftFraction(vector, int, def)

Available as part of the SINGULAR distribution.
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Examples |
Left-to-right conversion in the second rational g-shift algebra A:
LIB "olga.lib";

ring Q = (0,9),(x,y,Qx,Qy),dp; // commutative polynomial ring
matrix C[4][4] = UpOneMatrix(4); // defines a matrix of

C[1,3] = q; C[2,4] = q; //  non-commutative relations

def A = nc_algebra(C,0); // creates A from Q

setring A;

intvec v = 1,2; // rational localization at K[x,yl\{0}

poly £ = Qx+Qy; poly g = x"2+1;

vector frac = [g,f£,0,0];

vector result = convertLeftToRightFraction(frac,2,v);

print(result);

-> [x~2+1,Qx+Qy, (q~4) *x~2*Qx+x~2*Qy+(q~2) *Qx+(q~2) *Qy ,x~4+(q~2+1) *x~2+(q~2)]

Now result contains the left representation (x% + 1)71(Qx + Q) of frac
as well as its newly computed right representation
(@*x%Qx + x2Q, + ¢%Qy) - (x* + (¢ + 1)x* + ¢?) L. Plausibility check:

f * result[4] == g * result[3];
-> 1

isInS(result[4],2,v);

-> 1
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Examples I

Basic arithmetic with two left fractions in a monoidal localization of the
second Weyl algebra Aj:

LIB "olga.lib";

ring R = 0,(x,y,Dx,Dy),dp; // commutative polynomial ring

def A2 = Weyl(); setring A2; // creates A2 from R

poly gl = x+3; poly g2 = x*y+y; list L = gl,g2;

vector fracl = [gl,Dx,0,0]; vector frac2 = [g2,Dy,0,0];

vector result = addLeftFractions(fracl, frac2, 0, L); print(result);
-> [x"2%y+dxxky+3*y, xxy*Dx+y*Dx+x*Dy+3*Dy]

Thus, the sum is (x2y + 4xy + 3y) "1 (xyOx + yOx + x9y + 30,).

result = multiplyLeftFractions(fracl, frac2, 0, L); print(result);
-> [x"3%y~2+5%x" 2%y 2+7*x*y~2+3*y "2, x*ky*Dx*Dy+y*Dx*Dy-y*Dy]

This product is (x3y? + 5x2y? + 7xy? + 3y?) "L (xy0x0, + y0x0, — y0,).

result = multiplyLeftFractions(frac2, fraci, 0, L); print(result);
-> [x~2xy+4xx*xy+3*y,Dx*Dy]

In this order, the product is (x?y + 4xy + 3y) ™' (0x9y).
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4 SINGULAR olural

The latest version of SINGULAR (including olga.1ib) is available at:
http://www.singular.uni-kl.de
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