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1 Introduction

M. DONHAUSER, M. SCHMERBAUCH, A. MATZENMILLER

The failure prediction of composites is still a current research task since various macro- and
micromechanical approaches can not predict well all complex damage mechanisms. Kaddour,
Hinton, Smith and Li [16] state the apt question: “How well can we predict damage in composi-
tes?“. The complicated (complex) failure mechanisms at the macro scale are postponed to the

elementary failure mechanisms at the micro scale:
e matrix-fiber debonding
e matrix cracking
e fiber rupture

A multiphase composite is shwon at both scales in Fig. 1.0-1. The GENERALIZED METHOD
OF CELLS (GMC) and the HIGH-FIDELITY GENERALIZED METHOD OF CELLS (HFGMC) as
micromechanical approaches, see for an overview [2], have been developed for the analysis of
multiphase composite materials. Both methods are based on the homogenization technique for
periodic composites and are able to determine local field quantities as well as the effective
material behavior. The failure mechanisms can be modeled by using the

e clement deletion method
e inter-element crack method
e remeshing technique for crack growth

e Extended Finite-Element-Method (XFEM), see [7].
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Fig. 1.0-1: Unidirectional periodic array of multiphase composite media with its repeating unit cell
(RUC)

Moreover, the inter-element crack method can capture crack initiation as the traction separation
models comprise a damage model to represent damage in several sections of a material body.




1 Introduction

The XFEM is based on the formulation of the FEM and has an extended displacement ap-
proach which allows representing cracks mesh independent. This research report comprises the
micromechanical modeling of damage and failure using the concept of cohesive interface damage
applied to the HFGMC and the multiscale coupling with the XFEM at the macro scale.

The report is structured based on the research tasks of the project as follows:

Chapter 2 shows the comparison of homogenization results for different load cases using the
GMC, HFGMC and FEM, after a brief introduction of all approaches. This research task has
been processed in a preliminary stage of the research project and was published in [22]. (Rese-
arch task: UKSL-1.1)

The regular HFGMC with cohesive interface damage is presented in Chapter 3 in its condensed
form with all necessary equations. A structured assembling of the resultant nonlinear system
of equations is conducted by using the direct stiffness method well-known from the assembling
procedure of the FEM. Afterwards, two solution methods, the consistent linearization and weak
coupling, are shown and checked against each other. A study reveal the loss of convergence for
certain model parameters if the consistent linearization technique is used, which can be avoided
by using weak-coupling-relation among the constitutive equations of the traction-separation-
law.(Research task: UKSL-1.2 and UKSL-1.3)

Chapter 4 contains the description of the Extended Finite-Element-Method (XFEM) and the
multiscale analysis. The discretization approach by the XFEM and the resulting finite element
types are introduced. The element stiffness matrix for the cut element and the crack tip element
are deduced. In a first step, a multiscale analysis of a cracked plate under Mode-I loading using
the linear elastic HFGMC at the micro scale is shown and compared to the analytical solution,

which moreover verifies the implementation of the XFEM and the interaction between both

scales. (Research task: UKSL-1.4 and UKSL-2.1)




2 Comparison of Cell Approach with
Finite-Element-Method

M. SCHMERBAUCH, M. DONHAUSER, A. MATZENMILLER

2.1 Homogenization Methods

2.1.1 Finite Element Method

The weak form of the static equilibrium equation is given by

/56 rodV = /5u - pfdV + /5u -tdA (2.1-1)
Q Q r

where the integral on the left hand side is the internal virtual work and the integrals on the
right hand side are the external virtual works due to body forces and prescribed tractions. The
discretization of Eq. (2.1-1) by the Finite-Element-Method leads to

) ou” / BTCBudv - Jou™( [NTotav + [ NTeda) (2.1-2)
e=1 Qe e=1 Qe Te

where small deformations and linear elastic material behavior are assumed, for details see [7].
In order to determine the stress and strain fields in the RUC by the finite element analysis a

approximation of the averaged stress energy is required

1
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The specific strain energy of the homogenized continuum is given by
(€) : C* : (), (2.1-4)

where C* is the unknown effective stiffness tensor. Using Hill’s theorem of macro homogeneity

both strain energies can be equated

Ut = (UM (2.1-5)
1 * . — 1 . J—
§(e> :C": (e) = QVRVEaQ/ ol €A = (UM . (2.1-6)

Hence, the effective stiffness tensor C* can be determined from the solutions of ¢” and €" for
six applied load cases (LC), where one strain component is set to unity while the other are kept
zero [22]. For instance, the effective stiffness C3, and Cj, are determined by

1 . 02
5022632 lLen = (U") |Len (2.1-7)
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5044683 lLew = (U") ety - (2.1-8)
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2.1.2 Generalized Method of Cells

The GMC, see [24] and [1], is a semianalytical homogenization method for periodic microstruc-
tures assuming a first order displacement approach

u@8) = w(oB) 4 §eb) (057 | gleb) (08 4 z(abv) (0F7) (2.1-9)

where w(@7) @87 w(@B7) and (@A) are the microvariables and imposing traction and dis-
placement continuity in an average sense. Based on a spatial discretization of a RUC into an
arbitrary number of rectangular subcells Q(@57)  the traction and displacement conditions im-

posed lead to a linear system of equations for the surface-averaged normal stresses Tj;
ST = K(e) (2.1-10)

and to explicit equations for the shear-stress T;; with ¢ # j, see [2]. In Eq. (2.1-10) T is the
hyper-vector of the normal stresses, S is defined by the geometry and stiffness values of all
subcells, (€) by the boundary conditions and K by the dimensions of the RUC, see [25] and [22].
The effective stiffness C* is given by the partial derivative of the macro stress (o;) with respect
to the macro strain (e?>

Cli = = ov - (2.1-11)

After conducting the derivative Eq. (2.1-11) yields an explicit expression for the components of

the effective stiffness tensor, for instance C5, and C},, see Aboudi [2].
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2.1.3 High Fidelity Generalized Method of Cells

The GMC has the lack of shear coupling since this effect can become a first-order effect not
captured by the linear approach of the displacement field within a subcell Q7). Hence, the
HFGMC uses a second-order approach

18

) 2
oty - Eh i+ oy
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1 0 (21-14)

where W(#7) are the unknown microvariables. Applying the traction and displacement conti-
nuity in its average sense to a discretized RUC with an arbitrary number of rectangular subcells
leads to a resultant linear system of equations for linear-elastic material behavior of the mi-
cro constituents. The method in its original formulation solves the system of equations for the
microvariables W, see [3]|, whereby a condensed form with a fewer number of unknowns, the
surface-averaged displacements @ (%7) exists, see [14], [5], [2], which is used:

Kii = —De" . (2.1-15)




2.2 Comparison of Results

The effective stiffness C*, see Eq. (2.1-16), results from a weighted summation of subcell stiffness
C) multiplied with its corresponding strain concentration tensor A B,

1 NN
C* == > D hsh,CPVALY (2.1-16)
y=1p=1

2.2 Comparison of Results

Different two-dimensional discretizations, see Fig. 2.2-1, of the RUC with a single fiber (volume
content vy = 0.5) surrounded by matrix material are considered under transverse normal and
shear loading to predict the homogenized stiffness C3, and Cj,. The results are obtained for

QRS QR16 QR24 QR36

Fig. 2.2-1: Different discretizations of RUC with quadratic subcells (QR) [22]

homogeneous and periodic boundary conditions. The elastic material parameters of the trans-
verse isotropic carbon fiber are E, = 220.7 GPa, E; = 72.4 GPa, G, = 6.9 GPa, G; = 10.3
GPa, 1, = 0.25 and of the isotropic epoxy resin £ = 3.2 GPa and G = 1.2 GPa, see [4]. The
commercial program ANSYS is used for the homogenization with the FEM where the finite
element PLANE42 is chosen for a state of plane strain. To improve the accuracy of the coarse
mesh, the option extra displacement shapes (EDS) is enabled in the element formulation. The
homogenization results are shown in Fig. 2.2-2, which depend on the number of used elements.
The finite element analysis with homogeneous boundary conditions provides the highest effective
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Fig. 2.2-3: Predicted stress distribution o225 in GPa
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stiffness C'5, whether or not the option EDS is active, see Fig. 2.2-2a. Applying periodic boun-
dary conditions instead of homogeneous one, the effective stiffness decrease only slightly. A finer
mesh in the HFGMC analysis predicts a stiffness which is between the results of the finite ele-
ment analysis under homogeneous and periodic boundary conditions. The GMC analysis yields
the lowest results because of the approximately homogeneous stress distribution (Fig. 2.2-3 a-b)
as a result of the linear displacement approach (2.1-9), for details see [2]. The distribution of
normal stress o9o of the FEM and HFGMC corresponds quite well, see Fig. 2.2-3e and 2.2-3c.
The discretization of the fiber cross section has a heavy influence on the stress distribution, as
shown in Fig. 2.2-3c and Fig. 2.2-3d. The maximal stress o992 is located at the corners for the
square fiber geometry and at the horizontal line for the circular geometry. The depiction of the
circular fibre geometry leads to a reducing stiffness for both cell methods.

The homogenization results of the transverse shear stiffness Cj, are illustrated in Fig. 2.2-4. The
finite element analysis predicts the highest effective transverse shear stiffness with and without
using the EDS option. The boundary conditions have a significant influence again such as in the
previous case. The effective shear stiffness obtained by the HFGMC under homogeneous bounda-
ry conditions lies between the FEM results with homogeneous and periodic boundary conditions.
The fibre shape discretization has for the cell methods only a small influence on the effective
shear stiffness Cj,. The homogeneous stress distribution of the GMC models (Fig. 2.2-5a-b)
leads to the lowest shear stiffness, which are independent of the number of used elements and
the fiber geometry. As shown in Fig. 2.2-5¢-d the fiber shape affects the stress distribution for
the HFGMC. However, the stress distribution of the HFGMC and the FEM for a square fiber
are nearly the same.
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In Tab. 2.2-1, the stiffness components obtained by the different homogenization methods are
compared for a square fibre shape and a mesh of 36x36 elements. The stiffness values C5, and
C}, of the finite element analysis with periodic boundary conditions and EDS-option are selected
as reference values (100%). The small difference of HFGMC and FEM accentuate the accuracy
and application of the cell method. The GMC predicts the lowest stiffness values and, hence,
it has a slightly higher deviation to the FEM results. Nevertheless, the GMC produces results,




2.2 Comparison of Results

Tab. 2.2-1: Homogenization results of GMC, HFGM and FEM with square fibre for 36 x 36 elements [22]

. FEM, periodic b.c. FEM, hom. b.c.
Stiffness  HFGMC 1 BDS  without EDS “MC  ith EDS  without EDS
Cy, [MPa] 87160  8693.6 8694.8 8520.0 8739.8 8741.0
Ci (% 100.3 100.0 ~100.0 98.0 1005 100.5
Ci, [MPa] 21180  2096.2 2096.5 2044.0  2268.0 9269.8
Ci (% 1010 100.0 ~100.0 975  108.2 108.2

which are sufficient for the most engineering applications and is characterized by its numerical

efficiently [22].
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3 High Fidelity Method of Cells with Cohesive
Interface Damage

M. SCHMERBAUCH, M. DONHAUSER, A. MATZENMILLER

3.1 Spatial Discretization

The volume Viye = 1+ Agye of a RUC is spatially discretized in 1 x Ng x IV, rectangular solid-
subcells Q67 see Fig. 3.1-1, where y = (y1,Y2,y3) denotes the global Cartesian coordinate
system of the micro structure. The variables Ng and N, describe the number of solid-subcells in
each direction, 8 and ~y are pointers addressing the subcell Q7). The dimensions of each subcell
are given by léﬁ ) (yo-direction) and lév) (y3-direction) whose sums yield the absolute dimensions
of the RUC LQ and L3:

Ng N,
Ly=>"1) Ly=Y 1§ (3.1-1)
p=1 =1

The displacement field in each subcell u®?) = u(#") (X,z(ﬁﬂ)) is approached by a constant

macro part u’®7 (x) = %(x)y and a fluctuating one u’ (¥ (x, z(%)

w8 (X7Z(5ﬁ)) = ) (x) + /P (x, 25 | (3.1-2)

where x stands for the position vector of a material point at the macro level, z(#7) = (zgﬂm, zéﬁ ’7), z

for the local Cartesian coordinate system defined in the center of subcell Q%) and €° for the
macro strain. The fluctuating part u’(%) (x, z(P "Y)) is a sum of LEGENDRE-polynomial of zeroth,

aé3+(ﬁ7’¥)
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Fig. 3.1-1: Spatial dimensions, discretization and local degrees of freedom of RUC and subcell (%7

éﬁn))



3.1 Spatial Discretization

first and second order with unknown microvariables W ,,), see [3].

o' (B (X,Z(ﬁ,'y)) w w)+ (Br)w (B, w)+Z§B,w)W(5n)+

(00) (10) o1)
(8) (M)
v |3 () - (524) WD 4 2|3 (0 - (li) wi
(3.1-3)

To represent damage and consequent cracks in the matrix phase and fiber/matrix debonding,
interface subcells S™Y) are inserted between adjacent solid-subcells, see Fig. 3.1-2, where j stands
for the number of interface subcell j with its orientation in yo-direction (n = 2) or in ys-direction
(n = 3). The dimensions of a interface-subcell l2( 7 and Iy n() depend on the dimensions of the

neighboring solid-subcells

2(g 3(j
B9 = s BY =1y 5 (3.1-4)
= l3’§2(ﬂ—1,'y) = 12’9(5,7_1) . (3.1-5)

The microscopic strain field e(#7) = g(6:7) (x, z(ﬁ’“f)) of subcell Q) results from the kinematic
relations, see for instance [3]:

8%’7) (Zéﬁ " (B v)) eh) (3.1-6)

5 (5,0 =y + WD) + 3 5 >W2<{;g; (3.17)
1

0 ()~ L i 2P a1
1

5 (77,477 = e+ 5 (Wil + 357w | (3.1-10)
1

G (9 07) = ey + L W) + 30w + WD +3:LOWED) . (a1

The averaged strain of each subcell is given by

(eBMy = z(’Y / / (B 4,80 4B @B | (3.1-12)

Using the strain definition of Egs. (3.1-6) through (3.1-11), the components of the averaged
strain in Eq. (3.1-12) become

(e17 > =&y (3.1-13)
(e557) =3y + WQ((Bl(])) (3.1-14)
(e57) = s + Wg(ﬁ)f)) (3.1-15)
€5y =+ = Wfﬁg)) (3.1-16)
(e3") = +5 Wl(fof)) (3.1-17)
(e57) = % + 5 [Wz(foi)) Wik - (3.1-18)
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Fig. 3.1-2: Discretization of RUC with interface-subcells S*) and their local degrees of freedom

Assuming linear-elastic material behaviour in each solid-subcell Q%)
B = cBMeB) (3.1-19)
the averaged stress tensor is written as follows
(a(ﬁﬁ)> — By <E(Bﬁ)> , (3.1-20)

where C(#7) is the fourth order elastic stiffness tensor. The volume-averaged stress tensor (o)
of the RUC results from the averaging process over the entire RUC:

Ns N,
(0) =5 L2 7 : Z Z / / / o P (z) 2177 @257 4z (3.1-21)
NB N,
=7 L SS I (e (3.1-22)
2 36 1~=1

3.2 Solid Subcells

At first, surface-averaged tractions t"=(%7) at the face 902"+ are established

1 ~
g8 = e /tni(ﬁn)}ammm aiBm (3.2-1)

l(ﬂ/"/)

by using Cauchy’s theorem

B — BN nEBY) (3.2-2)
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3.2 Solid Subcells

and Hooke’s law (3.1-19). In particular

2467 = (L / 0(5’7)(i0.5l§6),z3) n** dzéﬁm for n = ey (3.2-3)
and

g = L / o (2, £0.51") 03 A2 forn = ey . (3.2-4)

Using the constitutive equation (3.1-20) and Egs. (3.1-13) - (3.1-18) the averaging in Eq. (3.2-3)
and Eq. (3.2-4) leads to

I 310 ]
2+ (B:7) o 1 ; Wi (8,7) o £,
=B ) + 205" (3.2-5)
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I G
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1
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B
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2
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t3-67) g/3-(67)

Fig. 3.2-1: Surface-averaged displacements @/ ™*(#7) | tractions t "*(#7) and surface normal n* at sur-
faces 002, 902, 903t und 903~ of subcell QB
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The fluctuating displacements u’(?7) are averaged in the same way as the surface-averaged

tractions in a next step at each face 9Q"+(#)

n

i 1 -
G (B _ e / CRITI CL

TR
in particular
+0.518"
1
a2t 87 = o) / u/(ﬂ’V)(iObléﬂ),Zs) dzéﬁm for n = e
l
—0.51{"
and
+0.5147
1
@) = / w0 (2, £0517) Ao forn=es.
g —0.515"

The averaging process in Eqs. (3.2-12) and (3.2-13) yields

2
8) z(‘”)
oy (B ly ( 2 (8,7) (B7)
utt | 2 1 Wi(i0) . Wi(00)
9 o 2
i léﬂ) (léﬁ )) Wi(20) Wi(o0)
2 4

(3.2-11)

(3.2-12)

(3.2-13)

(3.2-14)
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by using the fluctuating displacement approach (3.1-3). In order to link the surface-averaged

fluctuating displacements in Egs. (3.2-14) through (3.2-19) to the surface-averaged tractions in
Egs. (3.2-5) through (3.2-10), Egs. (3.2-14) through (3.2-19) are solved for the micro variables
W (um) with n # m

— 1 1 -
W1(10) B7) lg—) _lé—ﬁ) ﬂ%Jr B) A 0 B)
=] 2 2 L — e (3.2-20)
Wi0) () (@) (1) Wi
. 2 2 -
ey | = 1] (6:7) (6:7)
Waaoy | 2 @ | (a3t A 0 7
=] 2 2 L — e (3.2-21)
W2(20) (léﬁ))Q (léﬂ))2 Uy (12 ) WQ(OO)
PR S 0 [ .
Wiao) ]| 1P @ | (7] 0 ;
2 2 4
=| 2 P L — e (3.2-22)
W20 (léﬁ))Q (léﬂ))Q Us (l2 ) W300)
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3 High Fidelity Method of Cells with Cohesive Interface Damage

- 1 1 -
(57) N — TN — (57’\/) (577)
Wion) O A 0
=1 2 2 . ey (3.2-23)
Wiz OV (o2 L (57)" (Mo
(57) (57) )
R - L () (1)
Y N — TN — Y i
Wao1) 1) | [T 4 0
=1 2 2 . vy (3.2-24)
Wao2) (zQ))Q (Z?))Q U (lg ) Wa00)
(B:1) - 1) (B:1) (6:7)
Y N — TN — Y Y
W01 1§ 1§ a3’ 4 0
=1 2 2 L o (3.2-25)
Ws(2) N2 o2 | L (57)" (Wan
(57) (57) )

The missing three equations for the zeroth-order micro variables W qq) are determined by the
linear momentum in absence of volume forces. The static equilibrium is satisfied on average for
each subcell volume Q57

+0.515) +0.5157 4

/ / / (V-0) 8 @20 4P 4P = ¢ . (3.2-26)

051 —0.5187 0

Replacing the stress divergence (V -0)(5 ) by the constitutive Eq. (3.1-19) and the derivative
of the subcell strains €” by the micro variables W,y with n # m of Egs. (3.2-20) through
(3.2-25), the integration of Eq. (3.2-26) provides the unknown micro variables:

B2 A(B7)
w B _ C((igm (aer(ﬁfY) +u (57)) (lQ ) Css (ﬂ?+(5,7)+a§7(5ﬁ)) (3.2-27)
1(00 = — .
(00) 20%#) 9 (l:(;) C(Bﬁ)
(8) (B )
CEV a2y, 2) C” s 33
Wytoo) = —=25= (17 +ay™ %0 Yy (3.2-28)
) , 2 T N2 — (3
( 205" ( )+ 2(i57)" g™ (v )
() B 8,
o (5 ) cl; (2509 4 ) ) (@D @ @) (a2
3(00 _ = (5, .
2 () e 2C55"
with the abbreviations
) 18
i = B 4 ) (;—y)> (3.2-30)
3
) 1B
c =B 4 o) (%) (3.2-31)
l3
) 1o
i = el 4 o) (l ( 5)> . (3.2-32)
2

Using the equation of the micro variables (3.2-20) through (3.2-25) and (3.2-27) through (3.2-29)
in Egs. (3.2-5) through (3.2-10), a relation between the surface-averaged tractions t"*(%) and

14



3.3 Interface Subcells

the surface-averaged fluctuating displacements @'"+(%) is established, see [5]:

2+ Y68 T 167 ( g2+ )
1 K11 Ki2 O 0 0 0 Ki7 Kig O 0 0 0 /1
_ 1o
Z?% Ka1 Kao O 0 0 0 Ko7 Kag O 0 0 0 Uq
72 ~'2+
t2+ 0 0 K3z 3 Ksza 0 0 0 0 K3zo Kszi0 Ks,11 Ksi2 Uoy
22— —19_
t2 0 0 Ki3 Kaa 0 0 0 0 Kyq9 Ka0 Ka11 Kai2 Uy
72 —'2+
t3+ 0 0 0 0 Ks5 Ks6 0 0 Ks,9 Ksi10 Ksi11 Ksj2 Ug
2= 7o
3 o 0 0 0 0 Kg5 Ke,6 0 0 Kgo Ks,10 Ke,11 Ks,12 ug
B+ i3y +
i K71 K72 O 0 0 0 Kr7 Krg O 0 0 0 Uy
_ _I9__
] Ks1 Ksa O 0 0 0 Ks7 Kssg O 0 0 0 u13
/
t_ng 0 0 K93 Kgu Kgs Kge O 0  Ko9 Koo 0 0 17,23+
93— /3
t2 0 0 Kio,3 Ki0,4 Ki0,5 Kioe O 0  Kio,9 Kio,10 0 0 u23
3 7
t3+ 0 0 Kii1,3 Ki1,4 Ki11,5 K116 0 0 0 0 Ki1,11 Ki1,12 u33+
— /
tg 0 0 Ki23 Ki2a Ki25 Ki2e 0 0 0 0 Ki211 Ki2,12 17,33_
r 7 (BY)
0 0 0 0 Dis O
0 0 0 0 Dos 0O
D31 Ds3o  Dsg 0 0 0
0
Dy Dgg Days 0 0 0 %
0 0 0 D54 0 0 5(2)2
0
4 0 0 0 D64 0 0 533 ’ (3.2_33)
0 0 0 0 0 D76 Ea3
0 0 0 0 0 D86 5(1)2
0
0 0 0 D94 0 0 €13
0 0 0 Disa 0 0
Dy1g Dy Duig 0O 0 0
| Di2q D22 Dizg 0 0 0 |
which is briefly written to

where K37 denotes the solid-subcell stiffness matrix comprising material properties and subcell

dimensions, as well as D7) is a matrix with elastic stiffness components CZ(]B ) Both matrices,

K and D7) are specified in the Appendix A. The matrix K(#) is in case of a rectangular

solid-subcells a non-symmetric matrix. Only for the special case léﬁ ) = l:(g), i. e. in case of

quadratic solid-subcells Q37 K7 is symmetric.

3.3 Interface Subcells

A interface-subcell shares its faces with the adjacent solid-subcells:

r20) = g2 +(57) r+20) = 92~ (+17)  forn=e, (3.3-1)
r-30) = gQ3+(57) r+30) = 93~ (37t forn =ey (3.3-2)

where the unit vector of an interface S™9) points from the negative crack face I~ to the
positive face T79) see Fig. 3.1-2. The traction continuity in an averaged sense is forced between
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3 High Fidelity Method of Cells with Cohesive Interface Damage

the cohesive traction tb®
tht th
ttt el =0 trt 4t r=0. (3.3-3)
t_g7+ Egv_
The traction-separation-law is employed with surface-averaged quantities
tl=q . A'" (3.3-4)

where € is the stiffness matrix of the interface and A’ is the local surface-averaged displacement

jump vector

PN (3.3-5)

The local displacements of the interface W' '* and w'l~ are shared with the adjacent solid-
subcells. The traction-separation law is rewritten for the positive and negative face, satisfying

the traction continuity (3.3-3)

it Q. (ﬁ/1,+ _ ﬁll,f) ti-—q. (ﬁ'H Y L*) _ (3.3-6)

The tractions in Egs. (3.3-6); and (3.3-6), are sorted in vector-matrix notation whereby the
following interface system of equations is obtained:

it

n(j)

_an

which is briefly written to

0

- Qtt

0
0

0
0
— 2
0
0
np

EI,n(j) _ In(j)l—l/I,n(j) )

an

0
0
— O
0
0

0
Qu
0
0
— 2y
0

7 70)

Oy
0
0
— 2 |

—/ LJr n(])
un

AR
U
fa;)LJF
=1 I,— ’
un

TAN

=1 1,—
Up

(3.3-7)

(3.3-8)

The notation I for the matrix in Eq. (3.3-7) must be chosen because it must differ from the

matrix € of the traction-separation law and its components, hence:

t_rIL7+ n(j) _Ill 0 0 Iy 0 0 7 7) ﬂ%—i_ n(4)

Etl’+ 0 Iy, O 0 Iss O ﬁ%’-i_

Eg’Jr . 0 0 I3 O 0 I3 ﬁi’Jr (3 3_9)
Z?TIL’f N Is 0 0 Iy O 0 ﬁ%’f ’
e 0 I, 0 0 Is5s O uy~

Eg’_ i 0 0 Igs O 0 166_ ﬁi’_

with the components

Iy =1yy=—-15y= -1y = -2, (3.3-10)
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3.4 Constitutive Equations

3.4 Constitutive Equations

3.4.1 Traction-Separation-Model by Chaboche

The traction-separation-law proposed by Chaboche [11] links the tractions t to the local displa-
cement jump A by a stiffness tensor Q

tn Qo 0 0] (4,
tt - 0 Qtt 0 At . (34—1)
ty 0 0 2] LA
t = Q A (3.4-2)

The model distinguishes between a tension and compression loading for the stiffness component
Qnn:

{
F.(w)——=— A,>0
@A = (3.4-3)

K, A, <0

an =

where F,(w) denotes a equation depending on damage evolution, w the scalar damage variable,
t, the normal strength under tension loading, Ay, the displacement jump at rupture in normal
direction and K, a penalty stiffness. The behavior of this model in each single-mode is shown
in Fig. 3.4-1(a). The stiffness in shear direction, Qy and

(3.4-4)

= O (3.4-5)

depend on the strength in shear direction ¢, and the displacement jump at rupture A,s. The

ty FCA
27 |
t 4
.
\19\0‘5“&“%
(™
T > : -
AJA; A 1

(a) (b)

Fig. 3.4-1: Traction-separation-law by Chaboche in single-mode (a) Traction-separation relation
(b) evolution of function Fy

damage evolution follows

F(w) = =1 —w)? (3.4-6)
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3 High Fidelity Method of Cells with Cohesive Interface Damage

and is shown in Fig. 3.4-1 (b). The damage variable w is the maximum of the normed displace-
ment jump in the loading history

T>—00

lt) = F (A7) g i min {max | Ai(r)] 1} (3.4-7)

with the weighted norm

|Ai(T)r<t = \/(max {Zjnm}f + (Ag—(;))z + (AZ—T)Q : (3.4-8)

The term max {0, A, (7)} guarantees only contributions due to a tensile loading

A, A, >0
max {0, A, (1)} = { 0 A <o (3.4-9)

3.4.2 Traction-Separation-Model by Lissenden

The traction-separation-law proposed by Lissenden [21], see Fig. 3.4-2 (a), has the same form
such as Eq. (3.4-1) whereby the stiffness differ by the damage function Fy (w):

t
Fw)— A, >0
Opn = L(W) Anf o (34—10)
K, A, <0
i
Qtt = FL((,U)— (34—11)
A’T‘f
— Oy . (3.4-12)
This damage function Fi,(w), see Fig. 3.4-2 (b), is defined by
1 — 3w? + 2w?
F(w) = 1-3w" + 2" i (3.4-13)
w

The evolution of the scalar damage w is given by Eq. (3.4-7) and the weighted norm |A| by Eq.
(3.4-8). The model does not have an initial stiffness. Softening occurs once the equivalent stress

t, is reached:
£o(#) = min {ngi( It(7)], 1} , (3.4-14)

where the weighted traction norm [t(7)| is given by

[t(T)llr<t == \/(M)Q + (tt(T))Q + (t”(T))Q : (3.4-15)

n

3.4.3 Traction-Separation-Model by Camanho and Davila

Camanho and Davila [10] puplished a traction-separation-model based on the bilinear one of [15].
This elasto-damage model has an initial elastic stiffness K. The individual stiffness are given by

Opn =1 -HA)W K Qp=0-w)K Qp=(1-wk (3.4-16)
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3.4 Constitutive Equations

[ SN I

I
NN

(a) (b)

Fig. 3.4-2: Traction-separation-law by Lissenden in single-mode (a) Traction-separation relation

(b) evolution of function Fy,

where the HEAVISIDE-function H(A,,) is defined by

1 A, >0

H(A"):{o A, <0

Damage starts once the quadratic stress criterion

ot =y () + () 10

proposed by [8] is reached. The algebraic equation for damage evolution follows

max dm Agax - Amc
w(qma Am ’Amc) = (é _ 1)Amax )

A mixed-mode path Ay, describes mixed-mode loading:
Am(Arw AT) = <An>2 + A?r

where (.) denotes the MACAULEY-brackets:

<x>:{m mZO.

0 =<0

A mixity ratio 8 is introduced for the range A,, > 0:

A
AA) =" A .
B(Ar, Ay) A n>0

(3.4-17)

(3.4-18)

(3.4-19)

(3.4-20)

(3.4-21)

(3.4-22)
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3 High Fidelity Method of Cells with Cohesive Interface Damage

A critical mixed-mode displacement jump A is the displacement-based formulation of the
stress criterion (3.4-18), see [15]:

1+ (2 : Are
Amc(B) = Aret| ———5 A, >0, h B := : 4-2
(B) N T V Au>0,5>0 with foi= (3.4-23)

The power-law fracture criterion of Whitcomb [27]

[T, T7) = (%}f"))ﬂ + <§—:)ﬂ ~1=0 (3.4-24)

defined with strain energy release rates I',, I'Y of mode-I and mode-II as well as the interaction
parameter 7 is reformulated to use it in its displacement-based form characterized by the scalar

@] e

3.5 Assembling to RUC System of Equations

factor g, see [9]:

il

am(B) = (57 + %)

The assembling process of setting the condensed microstructure system of equations up is con-
ducted by applying the direct stiffness method. Therefore, global degrees of freedom ' are
introduced. In the case of perfect bounding, see Eqgs. (3.5-1) through (3.5-2), the assembling
leads from six local to three global degrees of freedom between adjacent subcells since they are
the same in this case:

@2~ (B — §/2+(B6-17) (3.5-1

3= B = gB+Ba-1) (3.5-2)

Using of interface subcells between adjacent solid-subcells increase the number of global degrees
of freedom by three additional ones. The defining of global degrees of freedom is illustrated
in Fig. 3.5-1 for both cases. The number of unknowns amount to Npor = 6NgIV, in the case
of perfect bonding and Npor = 6NgN,, + 3Ny, in the event of imperfect bonding (using Ny,
interface-subcells). The conditions of traction continuity generate the equations in the case of
perfect bonding, in particular the traction continuity between adjacent solid-subcells in the
sectoral plane (z1, z3) with the unit vector n = es:

g2+ 2B =0 B=1,.,Ny—1; y=1,..,N,, (3.5-3)

and in the sectoral plane (z1, z2) with the unit vector n = es:
g3+ p g3~ =0 B=1,.,Ns; y=1,..,N, -1 (3.5-4)
as well as the periodic traction conditions:

£27(177) + £2+(N/37'Y) =0 for n= €9 (35—5)

In the case of imperfect bonding the interface system of equations (3.3-9) provides the basic
equations, which yield for an interface-subcell inserted between the subcells Q) and QB+1:7)
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3.5 Assembling to RUC System of Equations

N‘!
N, -1
|
N, -2
3
2
Y3
1 interface
1 Y2
Y 1 2 3 <+« Ng—2 Ng—1 Ng

Fig. 3.5-1: Global degrees of freedom in case of perfect bonding between solid-subcells and interface-
subcells between adjacent solid-subcells

(n=eg)

t2+(87) = 120)@/2+(8) B=1,...,Ns—1; v=1,...,N,

§2-(3+10) — POg2-(6+19) B—1, .. Ny—1 y=1,...,N, (3.5-7)
and for an interface-subcell between the subcells Q%) and QD (n = e3):

3+ — 130) §/3+(B) B=1,.,Ng; v=1,.,N, -1 (3.5-8)

3B+ = POEB-Ba+) g=1,.. Ng; y=1,.,N,—1 .

Assessing the conditions of tractions continuity shown previously, the overall RUC system of
equations is obtained:

[K-1(¥)| ' = -De" . (3.5-9)

The global stiffness matrix K of all solid-subcells and the global matrix T of all inserted interface-
subcells have the dimension K € RVpor*Nvor and T € RNporxNoor | The stiffness matrix K is

not symmetric
K#KT v 21 (3.5-10)
for rectangular subcells, but for quadratic ones:
K=K vi{¥ =1 (3.5-11)
The stiffness matrix of all interface-subcells is always symmetric
i=17 v 0 P =) (3.5-12)

To assemble the matrices K, Tand D by applying the direct stiffness method, location-matrices
are introduced for each solid-subcell:

.
m®) = {m; my ms my ms mg my mg mg myy my mio P (3.5-13)
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3 High Fidelity Method of Cells with Cohesive Interface Damage

and for each interface-subcell
w0 = (i g T g e} (3.5-14)

The location-matrices (3.5-13) and (3.5-14) are visualized in Fig. 3.5-2 (a) and 3.5-2 (b). The
order of the components is based on the order of the degrees of freedom in the solid-subcell
system of equations (3.2-33) and interface-subcell system of equations (3.3-9). These matrices
are filled by the number of the global degrees of freedom 1’ allocated previously. The interface-
subcells share their global degrees of freedom with adjacent solid-subcells and depend on its
orientation. Hence, the entries of the interface location-matrix are certain entries of the location
matrix of solid-subcells:

‘ 2() 7
m20) — {miﬁ,w)’méﬁﬁ)’mgﬁﬁ),mgﬁfl,w),méﬁfln),mgﬁfln)} ) (3.5-15)
‘ 3) T
500 = {m37), m{GD mP 37, =D o) @ (3.5-16)
mHT
my g 3____
I
meh L QBA-1) s ij
me—,, QB e, -1 el Ty Mal iy QB
leT __‘571(3')_
ms g

Fig. 3.5-2: (a) Components of location matrix of solid-subcell Q(*?) (b) Components of location matrix
of interface-subcell S™) between subcell Q%7=1) and Q) or QB~1.7) and Q¥

Ultimately, the assembling of the global matrices K,i and D is a summation process:

Ng Ny 12 12
Klk — Z 23/ Z Z K 5’7 with | = m@(ﬂv“{) , k= mgﬂv“{)
B=1y=1i=1j=1

Ng Ny 12

Di= > 3 5y DI with 1 =m®7 k= m{) (3.5-17)
B=1~v=1i=1j=1

~ NInt . ( ) n(])

Iy, = ZZZI with [ =m]" k=m]
n=11i=1j=1

These summations can be “visualized” by writing the location-matrices m®?) and m™U) along
the columns and rows of the solid-subcell stiffness K7 matrix comprising material stiffness

D7) and interface-subcell stiffness matrix I"9) as follows

{ ma mo ... mi1 mi2 }
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3.5 Assembling to RUC System of Equations

my ) [Ki1 Kio ... 0 0
mo Ke1 Koo ... 0 0
E : : : (3.5-18)
miy 0 0 Kiinn K2
miz) | O 0 Kia11 K212
{ 1 2 3 4 5 6 }
miY[0O 0 0 0 Dy 0
mo 0 0 0 0 D25 0
: : : : : : (3.5—19)
mii | |Ds1 Ds2 Dss 0 0 0
mi2) [Der De2 Dg3 0 0 0]
{m1 mo m3 mg4 M5 e }
mi) [ln 0 0 Iy 0 0]
mo 0 I O 0 Iy O
ms 0 0 I3 O 0 I3 (3 5_20)
ma|In O 0 Iy O O '
ms| |0 s 0 0 Iz 0
ﬁ”LG i 0 0 I63 0 0 I66_

"y

Y

The resultant system of equations comprises rigid body motions, i. e. the stiffness matrix is

O
AN\

A
R

~ ~

(b)

Fig. 3.5-3: (a) Homogeneous and periodic deformation of RVE with periodic micro structure and each
RUC under macro shear strain €95 = €3, [19] (b) Bearing of discretized RUC [19]

singular. Every surface-averaged displacement of one corner cell (bottom left) is restraint and
the surface-averaged displacement of two more corner cells at the respective edges (bottom right
and top left), see Fig. 3.5-3 (b) marked with solid symbols. Three degrees of freedom are restraint

at four faces. So, the number of unknowns Npor becomes
Npor = 6NgNy + 3Ny, — 12 (3.5-21)

Because of the periodic boundary conditions, the degrees of freedom of opposite solid-subcell
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3 High Fidelity Method of Cells with Cohesive Interface Damage

surfaces are restraint as well, see Fig. 3.5-3 (b) marked with dashed symbols. The bearing is
taken into account by a zero in the appropriate entry of the solid-subcell location-matrix.

3.6 Effective Stiffness

The effective macro stiffness C* is the derivation of the macro stress 6° = (o) with respect to
the macro strain &°

o6 9(o)

C'=—=—++. 3.6-1

00 Oel ( )
The subcell-averaged strain in each subcell <£(5 77)) consists of a macro part being constant and
a fluctuating contribution, see Egs. (3.1-13) through (3.1-18). The microvariables W ,,,,) in the
fluctuating part are replaced by the unknown averaged surface displacements @ (®) by using
Eqgs. (3.2-20) through (3.2-25) and a relation for the fluctuating part of the subcell-averaged

strain:

£B) — v (B 5 B (3.6-2)
with
0 0o 0o 0 0 0o 0 0 0o o 0o o |¥
0 0 Yy You 0 O 0O 0 0 0 0 0
Y- Y-
vB) _ 0 O 0O 0 0 0 0O 0 0 0 311 Y312 . (3.6:3)
0 0 0 0 Yis Yig 0 0 Y9 Y4710 0 0
Y51 Yo 0 0O O O 0O 0 0 0 0 0
0 0 0 0 0 0 Yg Yss O 0 0 0 |
The non-zero entries of the matrix Y are given by
1
Yoz = —You =2Yy5 = —2Y 45 = 2Y51 = —2Y 50 = l(—ﬁ) (36—4)
2
1
Y311 = —Y312 =2Y49 = —2Y4 10 = 2Ye7 = —2Yes = FoR (3.6-5)
3

The subcell-averaged strain, see Egs. (3.1-13) through (3.1-18), becomes with Eq. (3.6-2):
(ePM)y = 0 4 YBN B (3.6-6)
Using Eq. (3.1-20) and Eq. (3.6-6), the constitutive relation of each subcell may be written as
(aPM)y = cB) (50 +Y®B) 1—1'(57“{)) . (3.6-7)

The sum of Eq. (3.1-22) is rewritten with Eq. (3.6-7):

Ns N Ns N
1 B Ny B Ny ,
(o) = — S P10l 4 S :léﬁ)lgﬂc(ﬁﬁ)y(ﬂﬁ) i (B:) (3.6-8)
253 B=1~v=1 pB=1~vy=1
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3.7 Consistent Linearization of Micromechanical System of Equations

Hence, the effective stiffness (3.6-1) is obtained! by using Eq. (3.6-8)

86/(57)
A B); () Bv) B); () Bv) BN"G ~
Cri = L2L3 (ZZZ ey +ZZZ ey i (3.6-9)

B=1~v=1 B=1~v=1

The unknown derivation 811;(5 ) /OeY is calculated by differentiating the RUC system of equation

(3.5-9) with respect to the macro strain ¢!

8%? {{KJ - f”(%;)} %;} = % {—ﬁz‘jﬁg} . (3.6-10)

Applying the product and chain rule, Eq. (3.6-10) becomes:

8[1/(\2‘1' IZJ( )} 87’
afm 68? "

—~ (97‘ N
T+ [Kz’j NG )} 850 = —D;;d; . (3.6-11)

Substituting the silent index of the second summand and bracketing leads to

9 [f?z‘j — I (%)} v =~ ol ~
{ (9/73‘;@ T+ {sz - [im(rm)} 8—6? =—-Dy (3.6—12)

1) O .
{WT]‘ + {sz - Iz‘m(Tm)] 8—5? =—1I; . (3.6-13)

I?Tan
il

The term in the brackets of Eq. (3.6-13) is the tangent stiffness matrix KTan resulting from the
linearization of the nonlinear system of equations (3.5-9), which is shown in the next section.
So a linear system of equations must be solved for six different right-hand-sides to get the
derivative OF' /0e®. The entries needed for the derivative 0u’'(®7) /9e® is picked out by the use
of the location-matrix m(®7) of the solid-subcell considered.

3.7 Consistent Linearization of Micromechanical System of
Equations

Newton’s method for finding the root of a real-valued function is based on a first order appro-
ximation of this function at a real point. For that, the nonlinear system of equations (3.5-9) is
transformed into a residual equation

r(r') = [K - 1(t')| ¥/ + De” . (3.7-1)
The iteration rule of Newton’s method

r(r, 1) =r(r,,,) + Dr(AF ) (3.7-2)

Index notation is used to show matrix multiplication

25



3 High Fidelity Method of Cells with Cohesive Interface Damage

needs the Gauteaux-differential of Eq. (3.7-1)

_ d _
Dr[AT] = O [r(F + nAr’)}nzo (3.7-3)
o, OR-TI@®)]
=~ 1 OL(E) -
= [K | (r’)} AY — BT JAN G (3.7-5)
The calculation rule becomes visible in index notation:
Dry[AF) = [Kyj — Ty (7)) | AT = L g AT 7, (3.7-6)
={[Ky - I (7)) = Ty 71.} &7, (3.7-7)
7o Tan
- K
which reveals the linearized stiffness matrix K. The linear system of equations
PO i o
K™ (r'(fl+1)) Ar'(;il) =-r (r/(flﬂ)) (3.7-8)
is solved in each iteration step i to update the approximation for the root f'(;':_ll):
ikl ot —1itl
r(;ﬂ) = r'(ﬁwrl) + Ar(rz”rl) . (3.7-9)
The matrix f{j = Al-k,jffg is build up in each iteration step next to the matrices I/(\ij and fij
to form I/igan by applying the direct stiffness method. First, the linearized stiffness matrix
K};-an = ik,jﬂgi is calculated at the local level and afterwards assembled, which is formally a

summation process:

NInt 6 6

T = Zl NS with t=m(”, k=ml" . (3.7-10)
n=1i=1j=1

Once again, this process can be “visualized” by writing the location-matrix of each interface-

subcell along the rows and columns:

{m1 mg mz m4 ms me }
in) [H Ty Ty Ty T T
Mo | 1o Iy Iz Iyy Ins Iy
mis| |1y B By Iy By I I
ma | (I Iy Iig Iy Iy i '
ms | [Isn Isy Iss Ipa Iz Igg

~ ! ! ! ! ! !
me _161 Iy I3 Iga 15 166_
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3.8 Weak Coupling

The several entries of the matrix fi?(j ) are:

00 O O O O O , 1"V
- An - n An - An - An - An
out 3@? 3@; Oun, ouy ou,
? () () ) Q Q
Oy, O Oy Oy Oy Oy
Oun, ouy ouy Oun, ouy oy,
Q 0 () () () ()
L N L VY- VT V7Y
7006) _ Un ouy ouy Ouy, ouy oy
o 02, 0nn 0nn 0, 0, 0,
An An An - - An - - An - - An
o ouy ouy Oty ouy ouy,
) () ? Q Q Q
0u p, Dy, 00wy 00y O, 00
Ouy, ouy ouy Oun ouy oy
3{211; Ay 3{211; Ay a&ibﬂb - 8(_2317 4, - 8(_2317 Ap _%Ab
L Oun ouy ouy Oun, ouy ouy, ]
(3.7-12)

3.8 Weak Coupling

The traction-separation-models used depend on the current damage state w,:

EZ%) _ Qn(j)(wztg)) -A’Zéi) , (3.8-1)

where the evolution of the damage variable w?rg ) is a function of the current surface-averaged
displacement-discontinuity:

widh = FALY) . (3.8-2)

This relations shown in Eq. (3.8-1) and (3.8-2) between tractions, displacement jump and damage
variable is called “strong coupling” that leads to the nonlinear system of equations (3.5-9).

Another way is to use the previous damage state w(,_1) in the traction-separation-law, called
“weak coupling”:

EZ%) _ Qnm(wzf]_)l)) . Azg) (3.8-3)

and update it after solving the microstructure system of equations, which is linear:

[ﬁ — T(w(n))} f/(n+1) = —ﬁ62n+1) . (3.8—4)

The advantage of this method is the overall system of equations is linear, i. e. no linearization

is necessary and convergence problems can not occur. On the other hand, the accuracy of the
solution depends on the macro step size.

3.9 Parameter Studies

In order to verify the implementation and study the behavior of the used tractions-separation-
laws, a sandwich-test is used , which consists of two solid-subcells embedding an interface-subcell,
see Fig 3.9-2. The basic interface parameters chosen for the parameters studies with the three
different traction-separation-laws are presented in Tab. 3.9-1.
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3 High Fidelity Method of Cells with Cohesive Interface Damage

ol v
Fig. 3.9-1: Chosen interface parameters

Parameter Value eM

7 — 4
normal strength ¢,, [MPa) 50 P eM— <Y
shear strength , [MPa] 25 Y3,
normal .fallure 'dlsplacemen.t JumpAAn [pm] 0.05 U L i
shear failure displacement jump A, [pm] 0.025

Fig. 3.9-2: Sandwich-test

Consistent linearization vs. weak-coupling

Fig. 3.9-3 shows the results for a consistent linearization of the nonlinear system of equations
and for a weak-coupling at the subcell-level under a macro strain €3,. As expected, the difference
between the numerically exact solution and the weak-coupling one depends on the used macro

step size Aedy. A very small step size (Aedy = 107%) must be chosen to minimize the deviation.

100

80 | |
=
S i
2 60} i |
& Aot
S Ao
b
’ “ ££=0.0001%

20 | Ae=0.001% - |

Ae=0.01% -
/ Newton
0 ‘ ‘ ‘ ‘ ‘

0 1 2 3 4 5 6
strain [2,,0%]

Fig. 3.9-3: Comparison between weak coupling and consistent linearization

Chaboche

Fig. 3.9-4 illustrates the influence of varying the failure displacement jump A, on the effective
stress-strain-curve by using Chaboche’s model. This variation affects the entire macroscopic
course including strength and softening area. The smaller the failure displacement jump the
steeper the decrease after reaching the maximum stress. A failure displacement jump of Apf =
0.02 pm leads to loss of convergence of Newton’s method at the maximum point. The stress
increase after its drop is caused by the bearing.

Lissenden

The parameter study by using Lissenden’s model and varying the failure displacement jump is
presented in Fig. 3.9-5 (a). The effective stress-strain-curve is the same for all parameter sets up
to reaching the stress criterion (3.4-14). Afterwards, the macroscopic behavior differs heavily.
The iteration process stops at the stress criterion for the smallest chosen failure parameter again.
The stress increases after the softening area because of the bearing.
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3.9 Parameter Studies

100

80 R

60

stress [@,,[[MPa]

20 J

strain [,,0-]

Fig. 3.9-4: Traction-separation-model by Chaboche: effective stress-strain-curve (oa2)-(g22) for different
prescribed failure displacement jumps

Camanho and Davila

Fig. 3.9-5 (b) shows the effective stress-strain-curve created by the use of Camanho and Davila’s
model for the interface-subcell on the microscopic level. The linear-softening area of this model is
clearly visible in the macroscopic answer. Again, the smallest chosen failure displacement jump
leads to loss of convergence of Newton’s method and the stress increase is caused by the bearing.

100 100
80 b 80 b
= =
: :
= 60 R = 60 R
8 S
5] An; =0.050 pm 5] An =0.050 pm
g 40 t £y =0.040 pm 1 g 40 t £y =0.040 pm 1
7 Ayt =0.030 pm 7 Ayt =0.030 pm
.l An=0.020 pm ] .l An=0.020 pm ]
A =0.010 um A =0.010 um
Aps =0.005 pm Aps =0.005 pm
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 0 1 2 3 4 5 6
strain [£y,00-] strain [£y,00-]
(a) (b)

Fig. 3.9-5: Effective stress-strain-curve (oa2)-(g22) for different prescribed failure displacement jumps
(a) Traction-separation-model by Lissenden (b) Traction-separation-model by Camanho und
Davila
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4 Extended Finite-Element-Method (X-FEM)

4 Extended Finite-Element-Method (X-FEM)

M. DONHAUSER, M. SCHMERBAUCH, A. MATZENMILLER

In a multiscale analysis the HFGMC with cohesive interface damage provides the effective mate-
rial stiffness at each GAUSsian point. The damage evolution at the micro scale leads at a critical
damage state to crack initiation at the macro scale. The crack is then taken into account mesh
independent using the extended finite element method. The critical damage state w. where the

crack initiates can be defined by:
e the damaged state where failure of the RUC occurs, see Fig. 4.0-1 (a)
or

e the point of stress maximum before the softening range, see Fig. 4.0-1 (b).

(@) 4 (o) 4

failure

€) V<€>
(a) (b)

P

Fig. 4.0-1: Effective stress-strain-curve of an arbitrary Gaussian point with macro crack initiation cri-
terion: (a) point of failure (b) stress maximum

4.1 Spatial Discretization

The Extended Finite-Element-Method (XFEM) firstly published in [6] and [23] is a numerical
method of calculation, which enables a mesh-independent representation of discontinuities such
as cracks in a finite element model. The fundamental difference to the classical Finite-Element-
Method (FEM) is an enhanced displacement approach. In the X-FEM the displacement field
approach u" is composed of a standard part corresponding to the classical FEM and an enrich-
ment part that takes the discontinuity into account:

ul(x) = ZNz‘(X)U—i + Z Nj(x)va; , (4.1-1)
€S JESe
standard enrichment

where x stands for the global position vector, N; and N; for isoparametric shape functions, u;
for the unknown nodal displacements, ¢ for the enrichment function of the discontinuity and a;
for the additional unknowns due to the enrichment. The set S includes all nodes of the finite-
element model and the set S, only those which should be enriched additionally. The following
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4.2 Element Stiffness

enhanced approach captures the problem of a crack (strong discontinuity) in a two-dimensional
FE-model:

4

a(x) = S Niw + Y N[ (FEe0) = FRe) bS]+ D Nix) (H(x) - H(x))ay
i€S JESCcTE k=1 lEScE
(4.1-2)

where the enrichment functions F* represent the singularity at the crack tip and the Heaviside
function H the jump of the displacement field because of the crack. For classification, a plate
with an inclined crack and the discretized XFEM-model is illustrated in Fig. 4.1-1 (a)-(b). The
discretized FE-model consists of four different element types as shown in Fig. 4.1-1 (b). The
element nodes surrounded by a blue box belongs to the set Serr and are enriched by the crack
tip functions Fj as well as the nodes surrounded by an orange box belongs to the set S¢g and

are enriched by the Heaviside function H.

ﬁ: 1) g
/ => :ﬁ = Ill)ﬁ
7 ‘\Z - w7

(a) v (b)

Fig. 4.1-1: (a): Plate with an inclined crack, (b): Discretized XFEM-model with different element types
I) solid element, II) cut element, IIT) crack tip element, IV) blending element

%

T

4.2 Element Stiffness

Cut element

A crack visualized by a solid line separates a two-dimensional cut element into two parts (domain
QT and Q7), having 16 element degrees of freedom (DOF), 8 due to the classical displacement
approach and 8 due to the enrichment, see Fig. 4.2-1. The Heaviside function is used to represent
the jump in the displacement field across the crack in the entire element. Thus, the displacement

approach at the element level is given by:

4 4
u(x) = > Now; + 3 Ni (H(x) - H(x:)) a . (4.2-1)
i=1 i=1

v,

The isoparametric shape functions NNV; are defined in the natural coordinates (£,7) as follows:

Ny = (1+& (1 —=n) (4.2-2)

(1=8 1 +n) (4.2-3)

1-9(1-n) N, =

(1+&) (1 +n) Ny =

N
N

N3 =
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4 Extended Finite-Element-Method (X-FEM)

as well as the Heaviside function H:

Hx)=+1 vxe QF (4.2-4)

Hx)=-1 vxe Q (4.2-5)

where Q7 is the upper and 2~ lower domain, see Fig. 4.2-1. The displacement approach (4.2-1)

is written in matrix notation

Uy A1y
e [N 0 Ny o0 Ny o0 N 0] e 0w 0w 0w 0 My
u = : .
0 Ny 0 Np 0 N3 0 DNy : 0 ¥, 0 ¥y 0 Y3 0 Yy !
Uy Q4
NStd V4 NEnr A4y
—— ——
u a
(4.2-6)
e _ Std Enr] (U
u® = [NS¢ N ]M, (4.2-7)

where N5t stands for the “shape function matrix” and NE™ for the “enrichment function

matrix”. The strain tensor is given by

20
I
€= |e2| = | ol (4.2-8)
€12 9 é
Jdy Oz
D

where D is the differential-operator and (u,v) the displacement field. Applying Eq. (4.2-8) to

V4, A4y V3, a3y

' U4, Gax ! usz, a3z
'

Fig. 4.2-1: Cut element with nodal degrees of freedom

the displacement field (4.2-7), the approximated strain tensor becomes

u] = Bi (4.2-9)

€ = [BStd BEnr]
a

with the operators

Nigz 0 Nz 0 N3z 0 Ngp O

B =DN=|0 N, 0 Ny 0 Ny, 0 Ny (4.2-10)
Niy Niz Noy Noy N3y Nop Nyy Ny
Uy, 0 Wy, 0 W3, 0 Ty, 0

B =DU=|0 ¥, 0 U, 0 WU, 0 U, (4.2-11)

\Ill,y \Ill,z \IIZ,y \112,1 \I/3,y \112,1 \I/4,y \114,1
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4.2 Element Stiffness

The derivation of the isoparametric shape functions are:

_ON;9E | ON; O N9 | ONidn

Niw = o€ dr | On Ox W98 ay | o oy (4.2-12)
and of the enrichment functions:
U, » =N, (H(x)— H(x;)) U,y =Ny (H(x)— H(x;)) (4.2-13)
with
Hx), — {1 at crack ‘ (4.2-14)
0 else
Assuming linear-elastic material behavior
o= Ce, (4.2-15)
where C denotes the fourth order elasticity tensor. The internal virtual work A, at the element
level
SAC, = /Q Se:od | (4.2-16)
becomes
SAS, = o) /Q B'CBdQ#, with B = [BSd BF] (4.2-17)
S

by using the strain tensor (4.2-9) and the constitutive model (4.2-15). The integral term in
Eq. (4.2-17) is the stiffness matrix k® with k¢ € R16¥16 of the cut element:

k°= [ BTCBdQ (4.2-18)
Qe
er BSthCBStddQ fﬂe BSthCBEnrdQ ki1 koo
_ _ (4.2-19)
er BEanCBStddQ er BEanCBEnrdQ k21 k22

Since the Heaviside function is contained in the matrices kio and koy, the integrand is not con-
tinuous over the integration domain. To evaluate the integrals of these sub-stiffness matrices, a
subdivision of the integration domain is necessary, see for instance [12] and [13].
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4 Extended Finite-Element-Method (X-FEM)

Crack tip element

This element type contains the crack tip and is only cut in a defined area, see Fig. 4.2-2. The
displacement field is solely discontinuous across the crack. Moreover, the enrichment functions
must be able to represent the stress singularity at the crack tip. Parts of the analytical solution
given by the linear elastic fracture mechanics (LEFM) for linear elastic and isotropic materials

have these properties and are used to create the enrichment functions of the crack tip element,

see [6]:
FY(r,0) = /7 sin(g) (4.2-20)
F2(r,0) = /v cos(g) (4.2-21)
F3(r,0) = /r sin(g)sin(ﬂ) (4.2-22)
Fr,0) = /r cos(g)sm(e) . (4.2-23)

The enrichment functions F!, F2, F3 and F* are defined in a polar coordinate system (r,6)
at the crack tip, see Fig. 4.2-2. The element has 40 degrees of freedom, 8 nodal displacements
u; and additional 32 unknowns b;? by the enrichment. Hence, the displacement approach at the
element level reads as follows:

4 4 4
w(x) =Y N + YN, (Z (FE(x) = F¥(x))) ) b (4.2-24)
i=1 j=1

k=1

or in matrix-vector notation

u'(x)=[N; Ny N3y Ny & &, & &,|* (4.2-25)

with the sub-matrices of the shape functions N;, of the enrichment functions ®; and the sub-
vectors at node ¢:

N, 0 w
Ni= 1"/ =1 4.2-26
? i 0 Nz‘| ) u; |:UZ‘| ) ( )
! F2 F3 2
=, 01 ) 02 . 03 X 04 ) (4.2-27)
0 K 0 F} 0 F' 0 F
[ T
b= |bl, b, b b, b b b, b;iy} , (4.2-28)

Using Eq. (4.2-8) and Eq. (4.2-25) the strain at the element level is obtained:
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4.2 Element Stiffness

V4, b}ly, biy, bzy, biy U3, béy7 bgyv bgw béy
4 3

wa Ve Ve b b, B B 0
!
!
/

o, ;b}y, B2, b3, bY,  lua, b, b3, by, b,

) wa, b B b b by bR b,

Fig. 4.2-2: Crack tip element with nodal degrees of freedom and local Cartesian (z,y) and polar coor-
dinate system (r,6) at the crack tip

up
u2
BStd BCT us
Uy S A
= [Bj*Y BjHd BSd B BET BST BT B{T] b,| = Bt (4.2-29)
B bo
b3
by
-
u
with the corresponding operators
Std CcT
B=|0 N Bi =10 le7y 0 Fz%y 0 E?:y 0 E‘L}y (4.2-30)
Ni,y Nz,x F;lyy F*le F1Z2y fo F;?:y F;?m F?,Ly F;é}m
and derivations
Ffy = Nig(Ff(x) = F*(x;)) + NiF} (4.2-31)
Ff, = Niy (F*(x) = F*(x;)) + NiFy, - (4.2-32)

The derivations of the crack tip enrichment functions F' ]; and F' IZ are calculated by the relation
between the global coordinate system (x,y) and the local coordinate systems at the crack tip
and using the chain rule twice, see for details [17]:

F}m = 2\1/_51n <9) cos(a) — %cos <9> sin(a) (4.2-33)
Fi = 2\1/_COS (9) cos(a) — 2\1/_sm (9) sin(«) (4.2-34)

Fz’c S ——sin <320) sin(f)cos(a) — # (Sin (g) + sin (%) cos(@)) sin(a) (4.2-35)

%) sin(f)cos(a) — %F (COS (g) + cos (%) cos(G)) sin(«) (4.2-36)

(
F; = 2\/_sm (9) sin(a) + 2\/_(308 (9) cos(a) (4.2-37)

F?/ = 2\/_(:os (0) sin(a) + 2\/_sm (6) cos(a) (4.2-38)
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4 Extended Finite-Element-Method (X-FEM)

Ff;’/ = %sm <30> sin(f)sin(«) + \/_ (Sln <9> + sin <§) COS(Q)) cos(a) (4.2-39)

Ff; = _2—\1/FCOS <32—9> sin(f)sin(«) + NG (COS <9> + cos (%) cos(@)) cos(a) . (4.2-40)

Using Eq. (4.2-29) and Eq. (4.2-16), the virtual work of the element level becomes:

0AS,

int —

=\ / B'CBdQ 4, with B=[BSd BCT] (4.2-41)
Qe
—_— ———
ke

where the integral term denotes the element stiffness matrix of the crack tip element

k= [ BTCBdQ (4.2-42)
Qe
Jo, BT CBSAQ [, BS'CBCTAQ]  [ki ke

kot koo

§ . k¢ € R0 (4.2.43)
Jo, BYT CB®dQ [, BYT CBCTdQ

Because of the trigonometric functions and the /r singularity in the derivations of the enrich-
ment functions, see Eqgs. (4.2-33) - (4.2-40), the evaluation of the integrals of the stiffness matrix
with the standard Gaussian quadrature leads to inaccurate results. Thus, the crack tip element
is subdivided into sub-triangles for the integration procedure and each domain is integrated by
the “almost polar integration method” proposed by [20] to achieve accurate results.

4.3 Multiscale Analysis

The finite-element program FEAP [26] in its version 8.2 is used to implement the Extended Finite-
FElement-Method, presented in the previous sections. So, the cut element, crack tip element and
blending element are programmed as user elements. In a first step, the linear-elastic HFGMC
is employed as user material model in the finite element program FEAP. The extended finite

TTTTTTTTJgg _ SEEEREE

2 2I i F}?»:‘,M;kl € ZI

Zy x
2a 1

[Py
Iy
Iy
[Py

NN

(a) (b)

oo
022

Fig. 4.3-1: (a): Plate under tensile load with crack (red) inside, (b): FE-model of the plate with applied
boundary conditions

element routines are modified in such a way that the HFGMC is called at each GAuUSSian point
and provides the necessary effective stiffness. A coupled simulation is conducted of a “infinite*
plate under tensile load (Mode-I) with a central straight crack inside, see Fig. 4.3-1, to verify the
implementation and compare the results to analytical ones. Since isotropic enrichment functions
(4.2-20) - (4.2-23) are used, the material parameters of the HFGMC are chosen to represent
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4.3 Multiscale Analysis

isotropic material behavior at the microscale. The square plate has the following dimensions
and material parameters

e length: [ = 30 mm
e bulk modulus K = 175000 MPa
e shear modulus G = 80769 MPa .

The crack length is 2a = 2mm and the applied tensile load is 035 = 100 MPa. The plate is
discretized with 61 x 63 = 3843 finite elements in plane stress. A part of the deformed mesh
configuration is shown in Fig. 4.3-2 (a). The enriched element around the crack can represent the
deformation expected because the mesh distort in the area. Fig. 4.3-2 (b) shows the simulation
results of the predicted stress distribution in load direction. The highest stress values are in front
of the crack tip. The theoretical solution shows the same results, which has a stress singularity
there. This result corresponds to the theoretical solution which has an singularity in the stress
field at the crack tip. The stress has the lowest values in the centre of the crack, where the gap is
visible. The stress distribution reaches the applied boundary magnitude in a sufficient distance
from the crack and its tip, respectively. It is possible to consider in the multiscale analysis the
stress distribution in the RUC at the micro scale. The area in front of the crack tip is the most
important region in that case. Because of the symmetry of the problem (geometry and load
application), it is sufficient to consider only one crack tip, here the right crack tip is chosen, see
Fig. 4.3-3 (a). The analytical solution of the stress field in front of the crack tip (x; > 0 and

7.97E+00
2.03E+01
3.27E+01
4.51E+01
5.75E+01
@1 6.98E+01

8.22E+01
9.46E+01
1.07E+02
1.19E+02
1.32E+02
1.44E+02
1.56E+02

I 7 —\\
1T
A\ L]

(a) (b)

Fig. 4.3-2: (a): Part of the deformed mesh configuration magnified 500 times, (b):Contour plot of the
stress distribution o992 for the plate with interior crack at the macro scale

x9=0) is given by [18]:

z1

099 = Ogg—————u
22 2, (r1/a)? -1

(4.3-1)
where a is the half crack length and z; denotes the axis. In Fig. 4.3-3 (b), the predicted stress
values at the Gaussian points in front of the crack tip as well as the analytical solution of the
stress field (4.3-1) are depicted. Furthermore, the stress distribution in the RUC is visible for
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4 Extended Finite-Element-Method (X-FEM)

certain GAUSSian points, which is homogenous since a homogenous microstructure is considered.
The largest numerical stress value and its deviation to the analytical solution is obtained at the
closest GAUSSian point with the shortest distance to the crack tip (1 =0.01 mm). The deviation
between numerical and analytical solution declines with increasing distance from the crack tip.
These first results show the HFGMC and the XFEM are implemented correct and the multiscale
analysis works.

400

450 . T T 450
analytical ——
simulation =

400 1F

350 -

300 -

250 - 1F- 250

stress o,, [MPa]

1F- 200

» xxxxx| x x x| 200 .
x1 ' i
;

150

41FE4 150

100

100

50 Bl 50

coordinate  [mm]

(a) (b)

Fig. 4.3-3: (a): FE-mesh in front of crack tip with position of Gaussian points for stress evaluation,
(b):Comparison of analytical and numerical solution at macroscale as well as microscopic
stress distribution
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