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1 Introduction
M. Donhauser, M. Schmerbauch, A. Matzenmiller

The failure prediction of composites is still a current research task since various macro- and

micromechanical approaches can not predict well all complex damage mechanisms. Kaddour,

Hinton, Smith and Li [16] state the apt question: “How well can we predict damage in composi-

tes?“. The complicated (complex) failure mechanisms at the macro scale are postponed to the

elementary failure mechanisms at the micro scale:

• matrix-fiber debonding

• matrix cracking

• fiber rupture

A multiphase composite is shwon at both scales in Fig. 1.0-1. The Generalized Method

of Cells (GMC) and the High-Fidelity Generalized Method of Cells (HFGMC) as

micromechanical approaches, see for an overview [2], have been developed for the analysis of

multiphase composite materials. Both methods are based on the homogenization technique for

periodic composites and are able to determine local field quantities as well as the effective

material behavior. The failure mechanisms can be modeled by using the

• element deletion method

• inter-element crack method

• remeshing technique for crack growth

• Extended Finite-Element-Method (XFEM), see [7].

Γσ

Γu

macro scale

reinforcement

micro scale

approximation of quadratic
fiber distribution

(RUC)

Fig. 1.0-1: Unidirectional periodic array of multiphase composite media with its repeating unit cell
(RUC)

Moreover, the inter-element crack method can capture crack initiation as the traction separation

models comprise a damage model to represent damage in several sections of a material body.
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1 Introduction

The XFEM is based on the formulation of the FEM and has an extended displacement ap-

proach which allows representing cracks mesh independent. This research report comprises the

micromechanical modeling of damage and failure using the concept of cohesive interface damage

applied to the HFGMC and the multiscale coupling with the XFEM at the macro scale.

The report is structured based on the research tasks of the project as follows:

Chapter 2 shows the comparison of homogenization results for different load cases using the

GMC, HFGMC and FEM, after a brief introduction of all approaches. This research task has

been processed in a preliminary stage of the research project and was published in [22]. (Rese-

arch task: UKSL-1.1)

The regular HFGMC with cohesive interface damage is presented in Chapter 3 in its condensed

form with all necessary equations. A structured assembling of the resultant nonlinear system

of equations is conducted by using the direct stiffness method well-known from the assembling

procedure of the FEM. Afterwards, two solution methods, the consistent linearization and weak

coupling, are shown and checked against each other. A study reveal the loss of convergence for

certain model parameters if the consistent linearization technique is used, which can be avoided

by using weak-coupling-relation among the constitutive equations of the traction-separation-

law.(Research task: UKSL-1.2 and UKSL-1.3)

Chapter 4 contains the description of the Extended Finite-Element-Method (XFEM) and the

multiscale analysis. The discretization approach by the XFEM and the resulting finite element

types are introduced. The element stiffness matrix for the cut element and the crack tip element

are deduced. In a first step, a multiscale analysis of a cracked plate under Mode-I loading using

the linear elastic HFGMC at the micro scale is shown and compared to the analytical solution,

which moreover verifies the implementation of the XFEM and the interaction between both

scales. (Research task: UKSL-1.4 and UKSL-2.1)
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2 Comparison of Cell Approach with
Finite-Element-Method

M. Schmerbauch, M. Donhauser, A. Matzenmiller

2.1 Homogenization Methods

2.1.1 Finite Element Method

The weak form of the static equilibrium equation is given by

∫

Ω

δǫǫǫ : σσσdV =

∫

Ω

δu · ρfdV +

∫

Γ

δu · tdA (2.1-1)

where the integral on the left hand side is the internal virtual work and the integrals on the

right hand side are the external virtual works due to body forces and prescribed tractions. The

discretization of Eq. (2.1-1) by the Finite-Element-Method leads to

ne⋃

e=1

δuT

∫

Ωe

BTCBudV =
ne⋃

e=1

δuT
(∫

Ωe

NTρfdV +

∫

Γe

NTtdA
)

(2.1-2)

where small deformations and linear elastic material behavior are assumed, for details see [7].

In order to determine the stress and strain fields in the RUC by the finite element analysis a

approximation of the averaged stress energy is required

〈Uh〉 =
1

2VRVE

∫

∂ΩRVE

σσσh : ǫǫǫh dΩ . (2.1-3)

The specific strain energy of the homogenized continuum is given by

U∗ =
1

2
〈σσσ〉 : 〈ǫǫǫ〉 =

1

2
〈ǫǫǫ〉 : C∗ : 〈ǫǫǫ〉, (2.1-4)

where C∗ is the unknown effective stiffness tensor. Using Hill’s theorem of macro homogeneity

both strain energies can be equated

U∗ = 〈Uh〉 (2.1-5)

1

2
〈ǫǫǫ〉 : C∗ : 〈ǫǫǫ〉 =

1

2VRVE

∫

∂ΩRVE

σσσh : ǫǫǫh dΩ = 〈Uh〉 . (2.1-6)

Hence, the effective stiffness tensor C∗ can be determined from the solutions of σσσh and ǫǫǫh for

six applied load cases (LC), where one strain component is set to unity while the other are kept

zero [22]. For instance, the effective stiffness C∗
22 and C∗

44 are determined by

1

2
C∗

22ǫ
0
22

2 |LC II = 〈Uh〉 |LC II (2.1-7)

1

2
C∗

44ǫ
0
23

2 |LC IV = 〈Uh〉 |LC IV . (2.1-8)
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2 Comparison of Cell Approach with Finite-Element-Method

2.1.2 Generalized Method of Cells

The GMC, see [24] and [1], is a semianalytical homogenization method for periodic microstruc-

tures assuming a first order displacement approach

u(αβγ) = w(αβγ) + ΦΦΦ(αβγ)z
(αβγ)
1 + ΨΨΨ(αβγ)z

(αβγ)
2 + ΞΞΞ(αβγ)z

(αβγ)
3 (2.1-9)

where w(αβγ), ΦΦΦ(αβγ), ΨΨΨ(αβγ) and ΞΞΞ(αβγ) are the microvariables and imposing traction and dis-

placement continuity in an average sense. Based on a spatial discretization of a RUC into an

arbitrary number of rectangular subcells Ω(αβγ), the traction and displacement conditions im-

posed lead to a linear system of equations for the surface-averaged normal stresses Tii

ST = K〈ǫ〉 (2.1-10)

and to explicit equations for the shear-stress Tij with i 6= j, see [2]. In Eq. (2.1-10) T is the

hyper-vector of the normal stresses, S is defined by the geometry and stiffness values of all

subcells, 〈ǫ〉 by the boundary conditions and K by the dimensions of the RUC, see [25] and [22].

The effective stiffness C∗ is given by the partial derivative of the macro stress 〈σi〉 with respect

to the macro strain 〈ǫ0j 〉

C∗
ij =

∂〈σi〉
∂〈ǫ0j 〉 . (2.1-11)

After conducting the derivative Eq. (2.1-11) yields an explicit expression for the components of

the effective stiffness tensor, for instance C∗
22 and C∗

44, see Aboudi [2].

C∗
22 =

Nα∑

α=1

Nγ∑

γ=1

dαdγ

dl
ˆCαγ
22 (2.1-12)

C∗
44 =

hl

d

Nα∑

α=1

Nβ∑

β=1

Nγ∑

γ=1

dα

hβlγS
(αβγ)
44

(2.1-13)

2.1.3 High Fidelity Generalized Method of Cells

The GMC has the lack of shear coupling since this effect can become a first-order effect not

captured by the linear approach of the displacement field within a subcell Ω(βγ). Hence, the

HFGMC uses a second-order approach

u(β,γ) = ū + W
(β,γ)
(00) + z

(β,γ)
2 W

(β,γ)
(10) + z

(β,γ)
3 W

(β,γ)
(01) +

+
1

2


3
(
z

(β,γ)
2

)2
−

(
l
(β)
2

)2

4


W

(β,γ)
(20) +

1

2


3
(
z

(β,γ)
3

)2
−

(
l
(γ)
3

)2

4


W

(β,γ)
(02) , (2.1-14)

where W(β,γ) are the unknown microvariables. Applying the traction and displacement conti-

nuity in its average sense to a discretized RUC with an arbitrary number of rectangular subcells

leads to a resultant linear system of equations for linear-elastic material behavior of the mi-

cro constituents. The method in its original formulation solves the system of equations for the

microvariables W, see [3], whereby a condensed form with a fewer number of unknowns, the

surface-averaged displacements ū
′(βγ), exists, see [14], [5], [2], which is used:

K̂ū
′

= −Dǫǫǫ0 . (2.1-15)
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2.2 Comparison of Results

The effective stiffness C∗, see Eq. (2.1-16), results from a weighted summation of subcell stiffness

C(βγ) multiplied with its corresponding strain concentration tensor A(βγ):

C∗ =
1

HL

Nγ∑

γ=1

Nβ∑

β=1

hβhγC(βγ)A(βγ) (2.1-16)

2.2 Comparison of Results

Different two-dimensional discretizations, see Fig. 2.2-1, of the RUC with a single fiber (volume

content vf = 0.5) surrounded by matrix material are considered under transverse normal and

shear loading to predict the homogenized stiffness C∗
22 and C∗

44. The results are obtained for

QR8 QR16 QR24 QR36

Fig. 2.2-1: Different discretizations of RUC with quadratic subcells (QR) [22]

homogeneous and periodic boundary conditions. The elastic material parameters of the trans-

verse isotropic carbon fiber are Ea = 220.7 GPa, Et = 72.4 GPa, Ga = 6.9 GPa, Gt = 10.3

GPa, νt = 0.25 and of the isotropic epoxy resin E = 3.2 GPa and G = 1.2 GPa, see [4]. The

commercial program ANSYS is used for the homogenization with the FEM where the finite

element Plane42 is chosen for a state of plane strain. To improve the accuracy of the coarse

mesh, the option extra displacement shapes (EDS) is enabled in the element formulation. The

homogenization results are shown in Fig. 2.2-2, which depend on the number of used elements.

The finite element analysis with homogeneous boundary conditions provides the highest effective
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2 Comparison of Cell Approach with Finite-Element-Method

stiffness C∗
22 whether or not the option EDS is active, see Fig. 2.2-2 a. Applying periodic boun-

dary conditions instead of homogeneous one, the effective stiffness decrease only slightly. A finer

mesh in the HFGMC analysis predicts a stiffness which is between the results of the finite ele-

ment analysis under homogeneous and periodic boundary conditions. The GMC analysis yields

the lowest results because of the approximately homogeneous stress distribution (Fig. 2.2-3 a-b)

as a result of the linear displacement approach (2.1-9), for details see [2]. The distribution of

normal stress σ22 of the FEM and HFGMC corresponds quite well, see Fig. 2.2-3e and 2.2-3c.

The discretization of the fiber cross section has a heavy influence on the stress distribution, as

shown in Fig. 2.2-3c and Fig. 2.2-3d. The maximal stress σ22 is located at the corners for the

square fiber geometry and at the horizontal line for the circular geometry. The depiction of the

circular fibre geometry leads to a reducing stiffness for both cell methods.

The homogenization results of the transverse shear stiffness C∗
44 are illustrated in Fig. 2.2-4. The

finite element analysis predicts the highest effective transverse shear stiffness with and without

using the EDS option. The boundary conditions have a significant influence again such as in the

previous case. The effective shear stiffness obtained by the HFGMC under homogeneous bounda-

ry conditions lies between the FEM results with homogeneous and periodic boundary conditions.

The fibre shape discretization has for the cell methods only a small influence on the effective

shear stiffness C∗
44. The homogeneous stress distribution of the GMC models (Fig. 2.2-5a-b)

leads to the lowest shear stiffness, which are independent of the number of used elements and

the fiber geometry. As shown in Fig. 2.2-5c-d the fiber shape affects the stress distribution for

the HFGMC. However, the stress distribution of the HFGMC and the FEM for a square fiber

are nearly the same.
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In Tab. 2.2-1, the stiffness components obtained by the different homogenization methods are

compared for a square fibre shape and a mesh of 36×36 elements. The stiffness values C∗
22 and

C∗
44 of the finite element analysis with periodic boundary conditions and EDS-option are selected

as reference values (100%). The small difference of HFGMC and FEM accentuate the accuracy

and application of the cell method. The GMC predicts the lowest stiffness values and, hence,

it has a slightly higher deviation to the FEM results. Nevertheless, the GMC produces results,
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2.2 Comparison of Results

Tab. 2.2-1: Homogenization results of GMC, HFGM and FEM with square fibre for 36×36 elements [22]

Stiffness HFGMC
FEM, periodic b.c.

GMC
FEM, hom. b.c.

with EDS without EDS with EDS without EDS

C∗
22 [MPa] 8716.0 8693.6 8694.8 8520.0 8739.8 8741.0

C∗
22 [%] 100.3 100.0 ≈100.0 98.0 100.5 100.5

C∗
44 [MPa] 2118.0 2096.2 2096.5 2044.0 2268.0 2269.8

C∗
44 [%] 101.0 100.0 ≈100.0 97.5 108.2 108.2

which are sufficient for the most engineering applications and is characterized by its numerical

efficiently [22].
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3 High Fidelity Method of Cells with Cohesive Interface Damage

3 High Fidelity Method of Cells with Cohesive
Interface Damage

M. Schmerbauch, M. Donhauser, A. Matzenmiller

3.1 Spatial Discretization

The volume VRUC = 1 ·ARUC of a RUC is spatially discretized in 1 ×Nβ ×Nγ rectangular solid-

subcells Ω(β,γ), see Fig. 3.1-1, where y = (y1, y2, y3) denotes the global Cartesian coordinate

system of the micro structure. The variables Nβ and Nγ describe the number of solid-subcells in

each direction, β and γ are pointers addressing the subcell Ω(β,γ). The dimensions of each subcell

are given by l
(β)
2 (y2-direction) and l

(γ)
3 (y3-direction) whose sums yield the absolute dimensions

of the RUC L2 and L3:

L2 =

Nβ∑

β=1

l
(β)
2 L3 =

Nγ∑

γ=1

l
(γ)
3 . (3.1-1)

The displacement field in each subcell u(β,γ) = u(β,γ)
(
x, z(β,γ)

)
is approached by a constant

macro part u0(β,γ)(x) = εεε0(x)y and a fluctuating one u′(β,γ)(x, z(β,γ))

u(β,γ)
(
x, z(β,γ)

)
= u0(β,γ)(x) + u′(β,γ)(x, z(β,γ)) , (3.1-2)

where x stands for the position vector of a material point at the macro level, z(βγ) =
(
z

(β,γ)
1 , z

(β,γ)
2 , z

(β,γ)
3

)

for the local Cartesian coordinate system defined in the center of subcell Ω(β,γ) and εεε0 for the

macro strain. The fluctuating part u′(β,γ)
(
x, z(β,γ)

)
is a sum of Legendre-polynomial of zeroth,

...

. . .

...

. . .

...

. . .

...

. . .

...

. . .

...

. . .

1 2 3 . . . Nβ − 2 Nβ − 1 Nβ

1

2

3

...

Nγ − 2

Nγ − 1

Nγ

y2

y3

b

y1

Ω(β,γ)

ū′

2
2+(β,γ)ū′

2
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ū′
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ū′
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ū′
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ū′
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1
3+(β,γ)

ū′

1
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z
(β,γ)
2

z
(β,γ)
3

b

z
(β,γ)
1

l
(β)
2

l(
γ
)

3

L2

L
3

matrix

fiber

Fig. 3.1-1: Spatial dimensions, discretization and local degrees of freedom of RUC and subcell Ω(β,γ)
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3.1 Spatial Discretization

first and second order with unknown microvariables W(nm), see [3].

u′(β,γ)
(
x, z(β,γ)

)
= W

(β,γ)
(00) + z

(β,γ)
2 W

(β,γ)
(10) + z

(β,γ)
3 W

(β,γ)
(01) +

+
1

2


3
(
z

(β,γ)
2

)2
−

(
l
(β)
2

)2

4


W

(β,γ)
(20) +

1

2


3
(
z

(β,γ)
3

)2
−

(
l
(γ)
3

)2

4


W

(β,γ)
(02)

(3.1-3)

To represent damage and consequent cracks in the matrix phase and fiber/matrix debonding,

interface subcells Sn(j) are inserted between adjacent solid-subcells, see Fig. 3.1-2, where j stands

for the number of interface subcell j with its orientation in y2-direction (n = 2) or in y3-direction

(n = 3). The dimensions of a interface-subcell l
n(j)
2 and l

n(j)
3 depend on the dimensions of the

neighboring solid-subcells

l
2(j)
3 = l3

∣∣
Ω(β,γ) l

3(j)
2 = l2

∣∣
Ω(β,γ) (3.1-4)

= l3
∣∣
Ω(β−1,γ) = l2

∣∣
Ω(β,γ−1) . (3.1-5)

The microscopic strain field εεε(β,γ) = εεε(β,γ)
(
x, z(β,γ)

)
of subcell Ω(β,γ) results from the kinematic

relations, see for instance [3]:

ε
(β,γ)
11

(
z

(β,γ)
2 , z

(β,γ)
3

)
= ε0

11 (3.1-6)

ε
(β,γ)
22

(
z

(β,γ)
2 , z

(β,γ)
3

)
= ε0

22 +W
(β,γ)
2(10) + 3z

(β,γ)
2 W

(β,γ)
2(20) (3.1-7)

ε
(β,γ)
33

(
z

(β,γ)
2 , z

(β,γ)
3

)
= ε0

33 +W
(β,γ)
3(01) + 3z

(β,γ)
3 W

(β,γ)
3(02) (3.1-8)

ε
(β,γ)
12

(
z

(β,γ)
2 , z

(β,γ)
3

)
= ε0

12 +
1

2

[
W

(β,γ)
1(10) + 3z

(β,γ)
2 W

(β,γ)
1(20)

]
(3.1-9)

ε
(β,γ)
13

(
z

(β,γ)
2 , z

(β,γ)
3

)
= ε0

13 +
1

2

[
W

(β,γ)
1(01) + 3z

(β,γ)
3 W

(β,γ)
1(02)

]
(3.1-10)

ε
(β,γ)
23

(
z

(β,γ)
2 , z

(β,γ)
3

)
= ε0

23 +
1

2

[
W

(β,γ)
2(01) + 3z

(β,γ)
3 W

(β,γ)
2(02) +W

(β,γ)
3(10) + 3z

(β,γ)
2 W

(β,γ)
3(20)

]
. (3.1-11)

The averaged strain of each subcell is given by

〈ε(β,γ)
ij 〉 =

1

1 l
(β)
2 l

(γ)
3

∫∫∫

V

ε
(β,γ)
ij dz

(β,γ)
1 dz

(β,γ)
2 dz

(β,γ)
3 . (3.1-12)

Using the strain definition of Eqs. (3.1-6) through (3.1-11), the components of the averaged

strain in Eq. (3.1-12) become

〈ε(β,γ)
11 〉 = ε0

11 (3.1-13)

〈ε(β,γ)
22 〉 = ε0

22 +W
(β,γ)
2(10) (3.1-14)

〈ε(β,γ)
33 〉 = ε0

33 +W
(β,γ)
3(01) (3.1-15)

〈ε(β,γ)
12 〉 = ε0

12 +
1

2
W

(β,γ)
1(10) (3.1-16)

〈ε(β,γ)
13 〉 = ε0

13 +
1

2
W

(β,γ)
1(01) (3.1-17)

〈ε(β,γ)
23 〉 = ε0

23 +
1

2

[
W

(β,γ)
2(01) +W

(β,γ)
3(10)

]
. (3.1-18)
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Fig. 3.1-2: Discretization of RUC with interface-subcells Sn(j) and their local degrees of freedom

Assuming linear-elastic material behaviour in each solid-subcell Ω(β,γ)

σσσ(β,γ) = C(β,γ)εεε(β,γ) , (3.1-19)

the averaged stress tensor is written as follows

〈σσσ(β,γ)〉 = C(β,γ)〈εεε(β,γ)〉 , (3.1-20)

where C(β,γ) is the fourth order elastic stiffness tensor. The volume-averaged stress tensor 〈σσσ〉
of the RUC results from the averaging process over the entire RUC:

〈σσσ〉 =
1

1L2 L3

Nβ∑

β=1

Nγ∑

γ=1

∫∫∫

V

σσσ(β,γ)(z) dz
(β,γ)
1 dz

(β,γ)
2 dz

(β,γ)
3 (3.1-21)

=
1

L2 L3

Nβ∑

β=1

Nγ∑

γ=1

l
(β)
2 l

(γ)
3 〈σσσ(β,γ)〉 . (3.1-22)

3.2 Solid Subcells

At first, surface-averaged tractions t̄n±(β,γ) at the face ∂Ωn±(β,γ) are established

t̄n±(β,γ) =
1

l
(β/γ)
n

∫

l
(β/γ)
n

tn±(β,γ)
∣∣
∂Ωn±(β,γ) dl̃ (β/γ)

n (3.2-1)

by using Cauchy’s theorem

tn±(β,γ) = σσσ(β,γ)nn±(β,γ) (3.2-2)
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3.2 Solid Subcells

and Hooke’s law (3.1-19). In particular

t̄2±(β,γ) =
1

l
(γ)
3

+0.5 l
(γ)
3∫

−0.5 l
(γ)
3

σσσ(β,γ)(±0.5 l
(β)
2 , z3) n2± dz

(β,γ)
3 for n = e2 (3.2-3)

and

t̄3±(βγ) =
1

l
(β)
2

+0.5 l
(β)
2∫

−0.5 l
(β)
2

σσσ(β,γ)(z2,±0.5 l
(β)
2 ) n3± dz

(β,γ)
2 for n = e3 . (3.2-4)

Using the constitutive equation (3.1-20) and Eqs. (3.1-13) - (3.1-18) the averaging in Eq. (3.2-3)

and Eq. (3.2-4) leads to





t̄2+
1

t̄2−
1





(β,γ)

= C
(β,γ)
66




1
3l

(β)
2

2

−1
3l

(β)
2

2








W1(10)

W1(20)





(β,γ)

+ 2C
(β,γ)
66





ε0
12

−ε0
12





(3.2-5)





t̄2+
2

t̄2−
2





(β,γ)

= C
(β,γ)
22




1
3l

(β)
2

2

−1
3l

(β)
2

2








W2(10)

W2(20)





(β,γ)

+C
(β,γ)
23





W3(01)

−W3(01)





(β,γ)

+

+
3∑

i=1

C
(β,γ)
i2





ε0
ii

−ε0
ii





(β,γ)

(3.2-6)





t̄2+
3

t̄2−
3





(β,γ)

= C
(β,γ)
44




1
3l

(β)
2

2

−1
3l

(β)
2

2








W3(10)

W3(20)





(β,γ)

+C
(β,γ)
44





W2(01)

−W2(01)





(β,γ)

+

e2

e3

z
(β,γ)
2

z
(β,γ)
3

Ω(β,γ)

∂Ω3+(β,γ) =
(
z

(β,γ)
2 , 0.5 l

(γ)
3

)

∂Ω3−(β,γ) =
(
z

(β,γ)
2 ,−0.5 l

(γ)
3

)
∂Ω2+(β,γ) =

(
0.5 l

(β)
2 , z

(β,γ)
3

)

∂Ω2+(β,γ) =
(

−0.5 l
(β)
2 , z

(β,γ)
3

)

n2+n2−

n3+

n3−

t̄ 2+(β,γ), ū′2+(β,γ)

t̄ 2−(β,γ), ū′2−(β,γ)

t̄ 3+(β,γ), ū′3+(β,γ)

t̄ 3−(β,γ), ū′3−(β,γ)

Fig. 3.2-1: Surface-averaged displacements ū′n±(β,γ), tractions t̄ n±(β,γ) and surface normal nn± at sur-
faces ∂Ω2+, ∂Ω2−, ∂Ω3+ und ∂Ω3− of subcell Ω(β,γ)
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+ 2C
(β,γ)
44





ε0
23

−ε0
23





(3.2-7)





t̄3+
1

t̄3−
1





(β,γ)

= C
(β,γ)
55




1
3l

(γ)
3

2

−1
3l

(γ)
3

2








W1(01)

W1(02)





(β,γ)

+ 2C
(β,γ)
55





ε0
13

−ε0
13





(3.2-8)





t̄3+
2

t̄3−
2





(β,γ)

= C
(β,γ)
44




1
3l

(γ)
3

2

−1
3l

(γ)
3

2








W2(01)

W2(02)





(β,γ)

+C
(β,γ)
44





W3(10)

−W3(10)





(β,γ)

+

+ 2C
(β,γ)
44





ε0
23

−ε0
23





(3.2-9)





t̄3+
3

t̄3−
3





(β,γ)

= C
(β,γ)
33




1
3l

(γ)
3

2

−1
3l

(γ)
3

2








W3(01)

W3(02)





(β,γ)

+C
(β,γ)
23





W2(10)

−W2(10)





(β,γ)

+

+
3∑

i=1

C
(β,γ)
i3





ε0
ii

−ε0
ii





. (3.2-10)

The fluctuating displacements u′(β,γ) are averaged in the same way as the surface-averaged

tractions in a next step at each face ∂Ωn±(β,γ)

ū′n±(β,γ) =
1

l
(β/γ)
n

∫

l
(β/γ)
n

u′(β,γ)
∣∣
∂Ωn± dl̃ (β/γ)

n , (3.2-11)

in particular

ū2±(β,γ) =
1

l
(γ)
3

+0.5 l
(γ)
3∫

−0.5 l
(γ)
3

u′(β,γ)(±0.5 l
(β)
2 , z3) dz

(β,γ)
3 for n = e2 (3.2-12)

and

ū′3±(β,γ) =
1

l
(β)
2

+0.5 l
(β)
2∫

−0.5 l
(β)
2

u′(β,γ)(z2,±0.5 l
(β)
2 ) dz

(β,γ)
2 for n = e3 . (3.2-13)

The averaging process in Eqs. (3.2-12) and (3.2-13) yields





ū2+
1

ū2−
1





(β,γ)

=




l
(β)
2

2

(
l
(β)
2

)2

4

− l
(β)
2

2

(
l
(β)
2

)2

4








W1(10)

W1(20)





(β,γ)

+





W1(00)

W1(00)





(β,γ)

(3.2-14)
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



ū2+
2

ū2−
2





(β,γ)

=




l
(β)
2

2

(
l
(β)
2

)2

4

− l
(β)
2

2

(
l
(β)
2

)2

4








W2(10)

W2(20)





(β,γ)

+





W2(00)

W2(00)





(β,γ)

(3.2-15)





ū2+
3

ū2−
3





(β,γ)

=




l
(β)
2

2

(
l
(β)
2

)2

4

− l
(β)
2

2

(
l
(β)
2

)2

4








W3(10)

W3(20)





(β,γ)

+





W3(00)

W3(00)





(β,γ)

(3.2-16)





ū3+
1

ū3−
1





(β,γ)

=




l
(γ)
3

2

(
l
(γ)
3

)2

4

− l
(γ)
3

2

(
l
(γ)
3

)2

4








W1(01)

W1(02)





(β,γ)

+





W1(00)

W1(00)





(β,γ)

(3.2-17)





ū3+
2

ū3−
2





(β,γ)

=




l
(γ)
3

2

(
l
(γ)
3

)2

4

− l
(γ)
3

2

(
l
(γ)
3

)2

4








W2(01)

W2(02)





(β,γ)

+





W2(00)

W2(00)





(β,γ)

(3.2-18)





ū3+
3

ū3−
3





(β,γ)

=




l
(γ)
3

2

(
l
(γ)
3

)2

4

− l
(γ)
3

2

(
l
(γ)
3

)2

4








W3(01)

W3(02)





(β,γ)

+





W3(00)

W3(00)





(β,γ)

(3.2-19)

by using the fluctuating displacement approach (3.1-3). In order to link the surface-averaged

fluctuating displacements in Eqs. (3.2-14) through (3.2-19) to the surface-averaged tractions in

Eqs. (3.2-5) through (3.2-10), Eqs. (3.2-14) through (3.2-19) are solved for the micro variables

W(nm) with n 6= m





W1(10)

W1(20)





(β,γ)

=




1

l
(β)
2

− 1

l
(β)
2

2
(
l
(β)
2

)2

2
(
l
(β)
2

)2








ū2+
1

ū2−
1





(β,γ)

− 4
(
l
(β)
2

)2





0

W1(00)





(β,γ)

(3.2-20)





W2(10)

W2(20)





(β,γ)

=




1

l
(β)
2

− 1

l
(β)
2

2
(
l
(β)
2

)2

2
(
l
(β)
2

)2








ū2+
2

ū2−
2





(β,γ)

− 4
(
l
(β)
2

)2





0

W2(00)





(β,γ)

(3.2-21)





W3(10)

W3(20)





(β,γ)

=




1

l
(β)
2

− 1

l
(β)
2

2
(
l
(β)
2

)2

2
(
l
(β)
2

)2








ū2+
3

ū2−
3





(β,γ)

− 4
(
l
(β)
2

)2





0

W3(00)





(β,γ)

(3.2-22)
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



W1(01)

W1(02)





(β,γ)

=




1

l
(γ)
3

− 1

l
(γ)
3

2
(
l
(γ)
3

)2

2
(
l
(γ)
3

)2








ū3+
1

ū3−
1





(β,γ)

− 4
(
l
(γ)
3

)2





0

W1(00)





(β,γ)

(3.2-23)





W2(01)

W2(02)





(β,γ)

=




1

l
(γ)
3

− 1

l
(γ)
3

2
(
l
(γ)
3

)2

2
(
l
(γ)
3

)2








ū3+
2

ū3−
2





(β,γ)

− 4
(
l
(γ)
3

)2





0

W2(00)





(β,γ)

(3.2-24)





W3(01)

W3(02)





(β,γ)

=




1

l
(γ)
3

− 1

l
(γ)
3

2
(
l
(γ)
3

)2

2
(
l
(γ)
3

)2








ū3+
3

ū3−
3





(β,γ)

− 4
(
l
(γ)
3

)2





0

W3(00)





(β,γ)

. (3.2-25)

The missing three equations for the zeroth-order micro variables W(00) are determined by the

linear momentum in absence of volume forces. The static equilibrium is satisfied on average for

each subcell volume Ω(β,γ)

+0.5 l
(γ)
3∫

−0.5 l
(γ)
3

+0.5 l
(β)
2∫

−0.5 l
(β)
2

1∫

0

(∇∇∇ · σσσ)(β,γ) dz
(β,γ)
1 dz

(β,γ)
2 dz

(β,γ)
3 = 0 . (3.2-26)

Replacing the stress divergence (∇∇∇ · σσσ)(β,γ) by the constitutive Eq. (3.1-19) and the derivative

of the subcell strains εεε(βγ) by the micro variables W(nm) with n 6= m of Eqs. (3.2-20) through

(3.2-25), the integration of Eq. (3.2-26) provides the unknown micro variables:

W
(β,γ)
1(00) =

C
(β,γ)
66

2C̄
(β,γ)
11

(
ū

2+(β,γ)
1 + ū

2−(β,γ)
1

)
+

(
l
(β)
2

)2
C

(β,γ)
55

2
(
l
(γ)
3

)2
C̄

(β,γ)
11

(
ū

3+(β,γ)
1 + ū

3−(β,γ)
1

)
(3.2-27)

W
(β,γ)
2(00) =

C
(β,γ)
22

2C̄
(β,γ)
22

(
ū

2+(β,γ)
2 + ū

2−(β,γ)
2

)
+

(
l
(β)
2

)2
C

(β,γ)
44

2
(
l
(γ)
3

)2
C̄

(β,γ)
22

(
ū

3+(β,γ)
2 + ū

3−(β,γ)
2

)
(3.2-28)

W
(β,γ)
3(00) =

(
l
(γ)
3

)2
C

(β,γ)
44

2
(
l
(β)
2

)2
C̄

(β,γ)
33

(
ū

2+(β,γ)
3 + ū

2−(β,γ)
3

)
+

C
(β,γ)
33

2C̄
(β,γ)
33

(
ū

3+(β,γ)
3 + ū

3−(β,γ)
3

)
(3.2-29)

with the abbreviations

C̄
(β,γ)
11 = C

(β,γ)
66 + C

(β,γ)
55

(
l
(β)
2

l
(γ)
3

)2

(3.2-30)

C̄
(β,γ)
22 = C

(β,γ)
22 + C

(β,γ)
44

(
l
(β)
2

l
(γ)
3

)2

(3.2-31)

C̄
(β,γ)
33 = C

(β,γ)
33 + C

(β,γ)
44

(
l
(γ)
3

l
(β)
2

)2

. (3.2-32)

Using the equation of the micro variables (3.2-20) through (3.2-25) and (3.2-27) through (3.2-29)

in Eqs. (3.2-5) through (3.2-10), a relation between the surface-averaged tractions t̄ n±(β,γ) and
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the surface-averaged fluctuating displacements ū′n±(β,γ) is established, see [5]:





t̄2+
1

t̄2−
1

t̄2+
2

t̄2−
2

t̄2+
3

t̄2−
3

t̄3+
1

t̄3−
1

t̄3+
2

t̄3−
2

t̄3+
3

t̄3−
3





(βγ)

=




K1,1 K1,2 0 0 0 0 K1,7 K1,8 0 0 0 0

K2,1 K2,2 0 0 0 0 K2,7 K2,8 0 0 0 0

0 0 K3,3 K3,4 0 0 0 0 K3,9 K3,10 K3,11 K3,12

0 0 K4,3 K4,4 0 0 0 0 K4,9 K4,10 K4,11 K4,12

0 0 0 0 K5,5 K5,6 0 0 K5,9 K5,10 K5,11 K5,12

0 0 0 0 K6,5 K6,6 0 0 K6,9 K6,10 K6,11 K6,12

K7,1 K7,2 0 0 0 0 K7,7 K7,8 0 0 0 0

K8,1 K8,2 0 0 0 0 K8,7 K8,8 0 0 0 0

0 0 K9,3 K9,4 K9,5 K9,6 0 0 K9,9 K9,10 0 0

0 0 K10,3 K10,4 K10,5 K10,6 0 0 K10,9 K10,10 0 0

0 0 K11,3 K11,4 K11,5 K11,6 0 0 0 0 K11,11 K11,12

0 0 K12,3 K12,4 K12,5 K12,6 0 0 0 0 K12,11 K12,12




(βγ)


ū
′2+
1

ū
′2−
1

ū
′2+
2

ū
′2−
2

ū
′2+
3

ū
′2−
3

ū
′3+
1

ū
′3−
1

ū
′3+
2

ū
′3−
2

ū
′3+
3

ū
′3−
3





(βγ)

+

+




0 0 0 0 D15 0

0 0 0 0 D25 0

D31 D32 D33 0 0 0

D41 D42 D43 0 0 0

0 0 0 D54 0 0

0 0 0 D64 0 0

0 0 0 0 0 D76

0 0 0 0 0 D86

0 0 0 D94 0 0

0 0 0 D10,4 0 0

D11,1 D11,2 D11,3 0 0 0

D12,1 D12,2 D12,3 0 0 0




(βγ)





ε0
11

ε0
22

ε0
33

ε0
23

ε0
12

ε0
13





, (3.2-33)

which is briefly written to

t̄(β,γ) = K(β,γ)ū′(β,γ) + D(β,γ)
εεε

0 , (3.2-34)

where K(β,γ) denotes the solid-subcell stiffness matrix comprising material properties and subcell

dimensions, as well as D(β,γ) is a matrix with elastic stiffness components C
(β,γ)
ij . Both matrices,

K(β,γ) and D(β,γ), are specified in the Appendix A. The matrix K(β,γ) is in case of a rectangular

solid-subcells a non-symmetric matrix. Only for the special case l
(β)
2 = l

(γ)
3 , i. e. in case of

quadratic solid-subcells Ω(β,γ), K(β,γ) is symmetric.

3.3 Interface Subcells

A interface-subcell shares its faces with the adjacent solid-subcells:

Γ−2(j) = ∂Ω2+(β,γ) Γ+2(j) = ∂Ω2−(β+1,γ) for n = e2 (3.3-1)

Γ−3(j) = ∂Ω3+(β,γ) Γ+3(j) = ∂Ω3−(β,γ+1) for n = e3 , (3.3-2)

where the unit vector of an interface Sn(j) points from the negative crack face Γ−n(j) to the

positive face Γ+n(j), see Fig. 3.1-2. The traction continuity in an averaged sense is forced between
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3 High Fidelity Method of Cells with Cohesive Interface Damage

the cohesive traction t̄ I,±

t̄ I,+ + t̄ I,− = 0





t̄ I,+
n

t̄ I,+
t

t̄ I,+
b





+





t̄ I,−
n

t̄ I,−
t

t̄ I,−
b





= 0 . (3.3-3)

The traction-separation-law is employed with surface-averaged quantities

t̄ I = ΩΩΩ · ∆̄∆∆
′ I , (3.3-4)

where ΩΩΩ is the stiffness matrix of the interface and ∆̄∆∆
′ I is the local surface-averaged displacement

jump vector

∆̄∆∆
′ I = ū′ I,+ − ū′ I,− . (3.3-5)

The local displacements of the interface ū′ I,+ and ū′ I,− are shared with the adjacent solid-

subcells. The traction-separation law is rewritten for the positive and negative face, satisfying

the traction continuity (3.3-3)

t̄ I,+ = −ΩΩΩ ·
(
ū′ I,+ − ū′ I,−

)
t̄ I,− = ΩΩΩ ·

(
ū′ I,+ − ū′ I,−

)
. (3.3-6)

The tractions in Eqs. (3.3-6)1 and (3.3-6)2 are sorted in vector-matrix notation whereby the

following interface system of equations is obtained:





t̄ I,+
n

t̄ I,+
t

t̄ I,+
b

t̄ I,−
n

t̄ I,−
t

t̄ I,−
b





n(j)

=




−Ωnn 0 0 Ωnn 0 0

0 −Ωtt 0 0 Ωtt 0

0 0 −Ωbb 0 0 Ωbb

Ωnn 0 0 −Ωnn 0 0

0 Ωtt 0 0 −Ωtt 0

0 0 Ωbb 0 0 −Ωbb




n(j)


ū′
n

I,+

ū′
t
I,+

ū′
b
I,+

ū′
n

I,−

ū′
t
I,−

ū′
b
I,−





n(j)

, (3.3-7)

which is briefly written to

t̄I,n(j) = In(j)ū′I,n(j) . (3.3-8)

The notation I for the matrix in Eq. (3.3-7) must be chosen because it must differ from the

matrix ΩΩΩ of the traction-separation law and its components, hence:





t̄ I,+
n

t̄ I,+
t

t̄ I,+
b

t̄ I,−
n

t̄ I,−
t

t̄ I,−
b





n(j)

=




I11 0 0 I14 0 0

0 I22 0 0 I25 0

0 0 I33 0 0 I36

I41 0 0 I44 0 0

0 I52 0 0 I55 0

0 0 I63 0 0 I66




n(j)


ūI,+
n

ūI,+
t

ūI,+
b

ūI,−
n

ūI,−
t

ūI,−
b





n(j)

(3.3-9)

with the components

I11 = I44 = −I14 = −I41 = −Ωnn (3.3-10)

I22 = I55 = −I25 = −I52 = −Ωtt (3.3-11)

I33 = I66 = −I36 = −I63 = −Ωbb . (3.3-12)
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3.4 Constitutive Equations

3.4 Constitutive Equations

3.4.1 Traction-Separation-Model by Chaboche

The traction-separation-law proposed by Chaboche [11] links the tractions t to the local displa-

cement jump ∆∆∆ by a stiffness tensor ΩΩΩ





tn
tt
tb





=



Ωnn 0 0

0 Ωtt 0

0 0 Ωbb








∆n

∆t

∆b





. (3.4-1)

t = ΩΩΩ ∆∆∆ (3.4-2)

The model distinguishes between a tension and compression loading for the stiffness component

Ωnn:

Ωnn =




Fc(ω)

t̂n
∆nf

∆n ≥ 0

Kp ∆n < 0

, (3.4-3)

where Fc(ω) denotes a equation depending on damage evolution, ω the scalar damage variable,

t̂n the normal strength under tension loading, ∆nf
the displacement jump at rupture in normal

direction and Kp a penalty stiffness. The behavior of this model in each single-mode is shown

in Fig. 3.4-1(a). The stiffness in shear direction, Ωtt and Ωbb

Ωtt = Fc(ω)
t̂τ
∆τ f

(3.4-4)

= Ωbb (3.4-5)

depend on the strength in shear direction t̂τ and the displacement jump at rupture ∆τ f . The

∆

t

t

t̂

∆/∆f

loading
unloading

(a)

ω
1

Fc

27

4

(b)

Fig. 3.4-1: Traction-separation-law by Chaboche in single-mode (a) Traction-separation relation
(b) evolution of function Fc

damage evolution follows

Fc(ω) =
27

4
(1 − ω)2 (3.4-6)
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and is shown in Fig. 3.4-1 (b). The damage variable ω is the maximum of the normed displace-

ment jump in the loading history

ω(t) = F (∆i(τ))τ=t
τ≥−∞ := min

{
max
τ≤t

|∆i(τ)|, 1
}

(3.4-7)

with the weighted norm

|∆i(τ)|τ≤t =

√(
max {0,∆n(τ)}

∆nf

)2

+

(
∆t(τ)

∆tf

)2

+

(
∆b(τ)

∆tf

)2

. (3.4-8)

The term max {0,∆n(τ)} guarantees only contributions due to a tensile loading

max {0,∆n(τ)} =




∆n ∆n ≥ 0

0 ∆n ≤ 0
. (3.4-9)

3.4.2 Traction-Separation-Model by Lissenden

The traction-separation-law proposed by Lissenden [21], see Fig. 3.4-2 (a), has the same form

such as Eq. (3.4-1) whereby the stiffness differ by the damage function FL(ω):

Ωnn =




FL(ω)

t̂n
∆nf

∆n ≥ 0

Kp ∆n < 0

(3.4-10)

Ωtt = FL(ω)
t̂τ
∆τ f

(3.4-11)

= Ωbb . (3.4-12)

This damage function FL(ω), see Fig. 3.4-2 (b), is defined by

FL(ω) =
1 − 3ω2 + 2ω3

ω
. (3.4-13)

The evolution of the scalar damage ω is given by Eq. (3.4-7) and the weighted norm |∆∆∆| by Eq.

(3.4-8). The model does not have an initial stiffness. Softening occurs once the equivalent stress

tv is reached:

tv(t) := min

{
max
τ≤t

|t(τ)|, 1
}
, (3.4-14)

where the weighted traction norm |t(τ)| is given by

||t(τ)||τ≤t :=

√(
max {0, tn(τ)}

t̂n

)2

+

(
tt(τ)

t̂τ

)2

+

(
tb(τ)

t̂τ

)2

. (3.4-15)

3.4.3 Traction-Separation-Model by Camanho and Davila

Camanho and Davila [10] puplished a traction-separation-model based on the bilinear one of [15].

This elasto-damage model has an initial elastic stiffness K. The individual stiffness are given by

Ωnn = [1 − H(∆n)ω]K Ωtt = (1 − ω)K Ωbb = (1 − ω)K (3.4-16)
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3.4 Constitutive Equations

t

t̂

∆
∆/∆f

t

loa
din

gunloa
din

g

(a)

ω

FL

1
(b)

Fig. 3.4-2: Traction-separation-law by Lissenden in single-mode (a) Traction-separation relation
(b) evolution of function FL

where the Heaviside-function H(∆n) is defined by

H(∆n) =





1 ∆n ≥ 0

0 ∆n < 0
. (3.4-17)

Damage starts once the quadratic stress criterion

f(tn, tτ ) =

√√√√
( 〈tn〉
t̂n

)2

+

(
tτ

t̂τ

)2

− 1 = 0 (3.4-18)

proposed by [8] is reached. The algebraic equation for damage evolution follows

ω(qm,∆
max
m ,∆mc) =

qm(∆max
m −∆mc)

(qm − 1)∆max
m

. (3.4-19)

A mixed-mode path ∆m describes mixed-mode loading:

∆m(∆n,∆τ ) =
√

〈∆n〉2 +∆2
τ (3.4-20)

where 〈.〉 denotes the Macauley-brackets:

〈x〉 =




x x ≥ 0

0 x < 0
. (3.4-21)

A mixity ratio β is introduced for the range ∆n > 0:

β(∆τ ,∆n) =
∆τ

∆n
∆n > 0 . (3.4-22)
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3 High Fidelity Method of Cells with Cohesive Interface Damage

A critical mixed-mode displacement jump ∆mc is the displacement-based formulation of the

stress criterion (3.4-18), see [15]:

∆mc(β) = ∆τc

√
1 + β2

β2
c + β2

∀ ∆n > 0 , β > 0 with βc :=
∆τc

∆nc
. (3.4-23)

The power-law fracture criterion of Whitcomb [27]

f∗(Γ∗
n,Γ

∗
τ ) =

(
Γ∗

n H(∆n)

Γnc

)η
+

(
Γ∗

τ

Γτc

)η
− 1 = 0 (3.4-24)

defined with strain energy release rates Γ∗
n, Γ∗

τ of mode-I and mode-II as well as the interaction

parameter η is reformulated to use it in its displacement-based form characterized by the scalar

factor qm, see [9]:

qm(β) = (β2
c + β2)



(
β2

c

qn

)̄η

+

(
β2

qτ

)̄η



− 1
η̄

β > 0 . (3.4-25)

3.5 Assembling to RUC System of Equations

The assembling process of setting the condensed microstructure system of equations up is con-

ducted by applying the direct stiffness method. Therefore, global degrees of freedom r̄′ are

introduced. In the case of perfect bounding, see Eqs. (3.5-1) through (3.5-2), the assembling

leads from six local to three global degrees of freedom between adjacent subcells since they are

the same in this case:

ū′2−(β,γ) = ū′2+(β−1,γ) (3.5-1)

ū′3−(β,γ) = ū′3+(β,γ−1) . (3.5-2)

Using of interface subcells between adjacent solid-subcells increase the number of global degrees

of freedom by three additional ones. The defining of global degrees of freedom is illustrated

in Fig. 3.5-1 for both cases. The number of unknowns amount to NDOF = 6NβNγ in the case

of perfect bonding and NDOF = 6NβNγ + 3NInt in the event of imperfect bonding (using NInt

interface-subcells). The conditions of traction continuity generate the equations in the case of

perfect bonding, in particular the traction continuity between adjacent solid-subcells in the

sectoral plane (z1, z3) with the unit vector n = e2:

t̄2+(β,γ) + t̄2−(β+1,γ) = 0 β = 1, ..., Nβ − 1 ; γ = 1, ..., Nγ , (3.5-3)

and in the sectoral plane (z1, z2) with the unit vector n = e3:

t̄3+(β,γ) + t̄3−(β,γ+1) = 0 β = 1, ..., Nβ ; γ = 1, ..., Nγ − 1 (3.5-4)

as well as the periodic traction conditions:

t̄2−(1,γ) + t̄2+(Nβ ,γ) = 0 for n = e2 (3.5-5)

t̄3−(β,1) + t̄3+(β,Nγ) = 0 for n = e3 . (3.5-6)

In the case of imperfect bonding the interface system of equations (3.3-9) provides the basic

equations, which yield for an interface-subcell inserted between the subcells Ω(β,γ) and Ω(β+1,γ)
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3.5 Assembling to RUC System of Equations
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Fig. 3.5-1: Global degrees of freedom in case of perfect bonding between solid-subcells and interface-
subcells between adjacent solid-subcells

(n = e2):

t̄2+(β,γ) = I2(j)ū′2+(β,γ) β = 1, . . . , Nβ − 1; γ = 1, . . . , Nγ

t̄2−(β+1,γ) = I2(j)ū′2−(β+1,γ) β = 1, . . . , Nβ − 1; γ = 1, . . . , Nγ
(3.5-7)

and for an interface-subcell between the subcells Ω(β,γ) and Ω(β,γ+1) (n = e3):

t̄3+(β,γ) = I3(j)ū′3+(β,γ) β = 1, ..., Nβ ; γ = 1, ..., Nγ − 1

t̄3−(β,γ+1) = I3(j)ū′3−(β,γ+1) β = 1, ..., Nβ ; γ = 1, ..., Nγ − 1 .
(3.5-8)

Assessing the conditions of tractions continuity shown previously, the overall RUC system of

equations is obtained:

[
K̂ − Î(r̄′)

]
r̄′ = −D̂εεε0 . (3.5-9)

The global stiffness matrix K̂ of all solid-subcells and the global matrix Î of all inserted interface-

subcells have the dimension K̂ ∈ R
NDOF×NDOF and Î ∈ R

NDOF×NDOF. The stiffness matrix K̂ is

not symmetric

K̂ 6= K̂T ∀ l
(β)
2 6= l

(γ)
3 (3.5-10)

for rectangular subcells, but for quadratic ones:

K̂ = K̂T ∀ l
(β)
2 = l

(γ)
3 . (3.5-11)

The stiffness matrix of all interface-subcells is always symmetric

Î = ÎT ∀ l
(β)
2 6= l

(γ)
3 , l

(β)
2 = l

(β)
3 . (3.5-12)

To assemble the matrices K̂, Î and D̂ by applying the direct stiffness method, location-matrices

are introduced for each solid-subcell:

m(β,γ) = {m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12}(β,γ)T

(3.5-13)
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3 High Fidelity Method of Cells with Cohesive Interface Damage

and for each interface-subcell

m̃n(j) = {m̃1 m̃2 m̃3 m̃4 m̃5 m̃6}n(j)T

. (3.5-14)

The location-matrices (3.5-13) and (3.5-14) are visualized in Fig. 3.5-2 (a) and 3.5-2 (b). The

order of the components is based on the order of the degrees of freedom in the solid-subcell

system of equations (3.2-33) and interface-subcell system of equations (3.3-9). These matrices

are filled by the number of the global degrees of freedom r̄′ allocated previously. The interface-

subcells share their global degrees of freedom with adjacent solid-subcells and depend on its

orientation. Hence, the entries of the interface location-matrix are certain entries of the location

matrix of solid-subcells:

m̃2(j) =
{
m

(β,γ)
4 ,m

(β,γ)
6 ,m

(β,γ)
2 ,m

(β−1,γ)
3 ,m

(β−1,γ)
5 ,m

(β−1,γ)
1

}2(j)T

(3.5-15)

m̃3(j) =
{
m

(β,γ)
12 ,m

(β,γ)
10 ,m

(β,γ)
8 ,m

(β,γ−1)
11 ,m

(β,γ−1)
9 ,m

(β,γ−1)
7

}3(j)T

. (3.5-16)

Ω(β,γ)
m3m4

m5m6

m1m2

m11

m12

m9

m10

m7

m8

(a)

Ω(β,γ)
Ω(β,γ−1)

Ω(β−1,γ) m̃1

m̃2

m̃3m̃4

m̃5

m̃6

n

Sn(j)

(b)

Fig. 3.5-2: (a) Components of location matrix of solid-subcell Ω(β,γ) (b) Components of location matrix
of interface-subcell Sn(j) between subcell Ω(β,γ−1) and Ω(β,γ) or Ω(β−1,γ) and Ω(β,γ)

Ultimately, the assembling of the global matrices K̂, Î and D̂ is a summation process:

K̂lk =
Nβ∑
β=1

Nγ∑
γ=1

12∑
i=1

12∑
j=1

K
(β,γ)
ij with l = m

(β,γ)
i , k = m

(β,γ)
j

D̂lk =
Nβ∑
β=1

Nγ∑
γ=1

12∑
i=1

6∑
j=1

D
(β,γ)
ij with l = m

(β,γ)
i , k = m

(β,γ)
j

Îlk =
NInt∑
n=1

6∑
i=1

6∑
j=1

I
n(j)
ij with l = m

n(j)
i , k = m

n(j)
j .

(3.5-17)

These summations can be “visualized” by writing the location-matrices m(β,γ) and m̃n(j) along

the columns and rows of the solid-subcell stiffness K(β,γ), matrix comprising material stiffness

D(β,γ) and interface-subcell stiffness matrix In(j) as follows

{ m1 m2 . . . m11 m12 }
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3.5 Assembling to RUC System of Equations





m1

m2
...

m11

m12








K1,1 K1,2 . . . 0 0

K2,1 K2,2 . . . 0 0
...

...
. . .

...
...

0 0 . . . K11,11 K11,12

0 0 . . . K12,11 K12,12




(3.5-18)

{ 1 2 3 4 5 6 }




m1

m2
...

m11

m12








0 0 0 0 D15 0

0 0 0 0 D25 0
...

...
...

...
...

...

D51 D52 D53 0 0 0

D61 D62 D63 0 0 0




(3.5-19)

{m̃1 m̃2 m̃3 m̃4 m̃5 m̃6 }




m̃1

m̃2

m̃3

m̃4

m̃5

m̃6








I11 0 0 I14 0 0

0 I22 0 0 I25 0

0 0 I33 0 0 I36

I41 0 0 I44 0 0

0 I52 0 0 I55 0

0 0 I63 0 0 I66




. (3.5-20)

The resultant system of equations comprises rigid body motions, i. e. the stiffness matrix is

x2

x3

(a) (b)

Fig. 3.5-3: (a) Homogeneous and periodic deformation of RVE with periodic micro structure and each
RUC under macro shear strain ε0

23 = ε0
32 [19] (b) Bearing of discretized RUC [19]

singular. Every surface-averaged displacement of one corner cell (bottom left) is restraint and

the surface-averaged displacement of two more corner cells at the respective edges (bottom right

and top left), see Fig. 3.5-3 (b) marked with solid symbols. Three degrees of freedom are restraint

at four faces. So, the number of unknowns NDOF becomes

NDOF = 6NβNγ + 3NInt − 12 . (3.5-21)

Because of the periodic boundary conditions, the degrees of freedom of opposite solid-subcell
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3 High Fidelity Method of Cells with Cohesive Interface Damage

surfaces are restraint as well, see Fig. 3.5-3 (b) marked with dashed symbols. The bearing is

taken into account by a zero in the appropriate entry of the solid-subcell location-matrix.

3.6 Effective Stiffness

The effective macro stiffness C∗ is the derivation of the macro stress σσσ
0 = 〈σσσ〉 with respect to

the macro strain εεε
0

C∗ =
∂σσσ0

∂εεε0
=
∂〈σσσ〉
∂εεε0

. (3.6-1)

The subcell-averaged strain in each subcell 〈εεε(β,γ)〉 consists of a macro part being constant and

a fluctuating contribution, see Eqs. (3.1-13) through (3.1-18). The microvariables W(nm) in the

fluctuating part are replaced by the unknown averaged surface displacements ū
′(β,γ) by using

Eqs. (3.2-20) through (3.2-25) and a relation for the fluctuating part of the subcell-averaged

strain:

ε̃εε
(β,γ) = Y(β,γ) ū

′(β,γ) (3.6-2)

with

Y(β,γ) =




0 0 0 0 0 0 0 0 0 0 0 0

0 0 Y23 Y24 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Y3,11 Y3,12

0 0 0 0 Y45 Y46 0 0 Y49 Y4,10 0 0

Y51 Y52 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Y67 Y68 0 0 0 0




(β,γ)

. (3.6-3)

The non-zero entries of the matrix Y are given by

Y23 = −Y24 = 2Y45 = −2Y46 = 2Y51 = −2Y52 =
1

l
(β)
2

(3.6-4)

Y3,11 = −Y3,12 = 2Y49 = −2Y4,10 = 2Y67 = −2Y68 =
1

l
(γ)
3

. (3.6-5)

The subcell-averaged strain, see Eqs. (3.1-13) through (3.1-18), becomes with Eq. (3.6-2):

〈εεε(β,γ)〉 = εεε
0 + Y(β,γ) ū

′(β,γ) . (3.6-6)

Using Eq. (3.1-20) and Eq. (3.6-6), the constitutive relation of each subcell may be written as

〈σσσ(β,γ)〉 = C(β,γ)
(
εεε

0 + Y(β,γ) ū
′(β,γ)

)
. (3.6-7)

The sum of Eq. (3.1-22) is rewritten with Eq. (3.6-7):

〈σσσ〉 =
1

L2 L3




Nβ∑

β=1

Nγ∑

γ=1

l
(β)
2 l

(γ)
3 C(β,γ)

εεε
0 +

Nβ∑

β=1

Nγ∑

γ=1

l
(β)
2 l

(γ)
3 C(β,γ)Y(β,γ) ū

′(β,γ)


 (3.6-8)
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3.7 Consistent Linearization of Micromechanical System of Equations

Hence, the effective stiffness (3.6-1) is obtained1 by using Eq. (3.6-8)

C∗
ki =

1

L2 L3




Nβ∑

β=1

Nγ∑

γ=1

l
(β)
2 l

(γ)
3 C

(βγ)
ki +

Nβ∑

β=1

Nγ∑

γ=1

l
(β)
2 l

(γ)
3 C

(βγ)
kl Y

(βγ)
lj

∂ū
′(βγ)
j

∂ε∗
i


 . (3.6-9)

The unknown derivation ∂ū
′(βγ)
j /∂ε0

i is calculated by differentiating the RUC system of equation

(3.5-9) with respect to the macro strain ε
0
i

∂

∂ε0
l

{[
K̂ij − Îij(̂̄r′

j)
]
̂̄r′

j

}
=

∂

∂εl

{
−D̂ijε

0
j

}
. (3.6-10)

Applying the product and chain rule, Eq. (3.6-10) becomes:

∂
[
K̂ij − Îij(̂̄r′

j)
]

∂̂̄r′

m

∂̂̄r′

m

∂ε0
l

̂̄r′

j +
[
K̂ij − Îij(̂̄r′

j)
] ∂̂̄r′

j

∂ε0
l

= −D̂ijδjl . (3.6-11)

Substituting the silent index of the second summand and bracketing leads to




∂
[
K̂ij − Îij(̂̄r

′

j)
]

∂̂̄r′

m

̂̄r′

j +
[
K̂im − Îim(̂̄r′

m)
]



∂̂̄r′

m

∂ε0
l

= −D̂il (3.6-12)




∂
[
−Îij(̂̄r

′

j)
]

∂̂̄r′

m

̂̄r′

j +
[
K̂im − Îim(̂̄r′

m)
]




︸ ︷︷ ︸
K̂Tan

il

∂̂̄r′

m

∂ε0
l

= −Îil . (3.6-13)

The term in the brackets of Eq. (3.6-13) is the tangent stiffness matrix K̂Tan resulting from the

linearization of the nonlinear system of equations (3.5-9), which is shown in the next section.

So a linear system of equations must be solved for six different right-hand-sides to get the

derivative ∂r̄′/∂εεε0. The entries needed for the derivative ∂ū′(β,γ)/∂εεε0 is picked out by the use

of the location-matrix m(β,γ) of the solid-subcell considered.

3.7 Consistent Linearization of Micromechanical System of

Equations

Newton’s method for finding the root of a real-valued function is based on a first order appro-

ximation of this function at a real point. For that, the nonlinear system of equations (3.5-9) is

transformed into a residual equation

r(r̄′) =
[
K̂ − Î(r̄′)

]
r̄′ + D̂εεε

0 . (3.7-1)

The iteration rule of Newton’s method

r(r̄′ i+1
n+1 ) = r(r̄′ i

n+1) + Dr(∆r̄′ i+1
n+1 ) (3.7-2)

1Index notation is used to show matrix multiplication
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3 High Fidelity Method of Cells with Cohesive Interface Damage

needs the Gâuteaux-differential of Eq. (3.7-1)

Dr[∆r̄′] =
d

dη

[
r
(
r̄′ + η∆r̄′

)]
η=0 (3.7-3)

=
[
K̂ − Î

(
r̄′
)]

∆r̄′ +
∂
[
K̂ − Î (r̄′)

]

∂r̄′
∆r̄′ r̄′ (3.7-4)

=
[
K̂ − Î

(
r̄′
)]

∆r̄′ − ∂ L̂ (r̄′)

∂ r̄′
∆r̄′ r̄′ . (3.7-5)

The calculation rule becomes visible in index notation:

Dri[∆r̄
′
j ] =

[
K̂ij − Îij

(
r̄′

j

)]
∆r̄′

k − Îik,j ∆r̄′
j r̄

′
k (3.7-6)

=
{[
K̂ij − Îij

(
r̄′

j

)]
− Îik,j r̄

′
k

}

︸ ︷︷ ︸
= K̂Tan

ij

∆r̄′
j , (3.7-7)

which reveals the linearized stiffness matrix K̂Tan. The linear system of equations

K̂Tan
(
r̄′ i

(n+1)

)
∆r̄′ i+1

(n+1) = −r
(
r̄′ i

(n+1)

)
(3.7-8)

is solved in each iteration step i to update the approximation for the root r̄′ i+1
(n+1):

r̄′ i+1
(n+1) = r̄′ i

(n+1) + ∆r̄′ i+1
(n+1) . (3.7-9)

The matrix Î ′
ij = Îik,j r̄

′
k is build up in each iteration step next to the matrices K̂ij and Îij

to form K̂Tan
ij by applying the direct stiffness method. First, the linearized stiffness matrix

KTan
ij = Iik,jū

′i±
k is calculated at the local level and afterwards assembled, which is formally a

summation process:

Î ′
lk =

NInt∑

n=1

6∑

i=1

6∑

j=1

I
(n)′

ij with l = m̃
(n)
i , k = m̃

(n)
j . (3.7-10)

Once again, this process can be “visualized” by writing the location-matrix of each interface-

subcell along the rows and columns:

{ m̃1 m̃2 m̃3 m̃4 m̃5 m̃6 }




m̃1

m̃2

m̃3

m̃4

m̃5

m̃6








I ′
11 I ′

12 I ′
13 I ′

14 I ′
15 I ′

16

I ′
21 I ′

22 I ′
23 I ′

24 I ′
25 I ′

26

I ′
31 I ′

32 I ′
33 I ′

34 I ′
35 I ′

36

I ′
41 I ′

42 I ′
43 I ′

44 I ′
45 I ′

46

I ′
51 I ′

52 I ′
53 I ′

54 I ′
55 I ′

56

I ′
61 I ′

62 I ′
63 I ′

64 I ′
65 I ′

66




n(j)

. (3.7-11)
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3.8 Weak Coupling

The several entries of the matrix Î
n(j)′

ij are:

Î
n(j)′

ij =




−∂Ωnn

∂ū+
n
∆n −∂Ωnn

∂ū+
t

∆n −∂Ωnn

∂ū+
b

∆n
∂Ωnn

∂ū−
n
∆n

∂Ωnn

∂ū−
t

∆n
∂Ωnn

∂ū−
b

∆n

−∂Ωtt

∂ū+
n
∆t −∂Ωtt

∂ū+
t

∆t −∂Ωtt

∂ū+
b

∆t
∂Ωtt

∂ū−
n
∆t

∂Ωtt

∂ū−
t

∆t
∂Ωtt

∂ū−
b

∆t

−∂Ωbb

∂ū+
n
∆b −∂Ωbb

∂ū+
t

∆b −∂Ωbb

∂ū+
b

∆b
∂Ωbb

∂ū−
n
∆b

∂Ωbb

∂ū−
t

∆b
∂Ωbb

∂ū−
b

∆b

∂Ωnn

∂ū+
n
∆n

∂Ωnn

∂ū+
t

∆n
∂Ωnn

∂ū+
b

∆n −∂Ωnn

∂ū−
n
∆n −∂Ωnn

∂ū−
t

∆n −∂Ωnn

∂ū−
b

∆n

∂Ωtt

∂ū+
n
∆t

∂Ωtt

∂ū+
t

∆t
∂Ωtt

∂ū+
b

∆t −∂Ωtt

∂ū−
n
∆t −∂Ωtt

∂ū−
t

∆t −∂Ωtt

∂ū−
b

∆t

∂Ωbb

∂ū+
n
∆b

∂Ωbb

∂ū+
t

∆b
∂Ωbb

∂ū+
b

∆b −∂Ωbb

∂ū−
n
∆b −∂Ωbb

∂ū−
t

∆b −∂Ωbb

∂ū−
b

∆b




n(j)

.

(3.7-12)

3.8 Weak Coupling

The traction-separation-models used depend on the current damage state ω(n):

t̄
n(j)
(n) = ΩΩΩn(j)(ωn(j)

(n)

)
· ∆̄̄∆̄∆

n(j)
(n) , (3.8-1)

where the evolution of the damage variable ω
n(j)
(n) is a function of the current surface-averaged

displacement-discontinuity:

ω
n(j)
(n) = f(∆̄̄∆̄∆

n(j)
(n) ) . (3.8-2)

This relations shown in Eq. (3.8-1) and (3.8-2) between tractions, displacement jump and damage

variable is called “strong coupling” that leads to the nonlinear system of equations (3.5-9).

Another way is to use the previous damage state ω(n−1) in the traction-separation-law, called

“weak coupling”:

t̄
n(j)
(n) = ΩΩΩn(j)(ω

n(j)
(n−1)) · ∆̄̄∆̄∆

n(j)
(n) (3.8-3)

and update it after solving the microstructure system of equations, which is linear:

[
K̂ − Î(ωωω(n))

]
r̄′

(n+1) = −D̂εεε
0

(n+1) . (3.8-4)

The advantage of this method is the overall system of equations is linear, i. e. no linearization

is necessary and convergence problems can not occur. On the other hand, the accuracy of the

solution depends on the macro step size.

3.9 Parameter Studies

In order to verify the implementation and study the behavior of the used tractions-separation-

laws, a sandwich-test is used , which consists of two solid-subcells embedding an interface-subcell,

see Fig 3.9-2. The basic interface parameters chosen for the parameters studies with the three

different traction-separation-laws are presented in Tab. 3.9-1.
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3 High Fidelity Method of Cells with Cohesive Interface Damage

Fig. 3.9-1: Chosen interface parameters

Parameter Value

normal strength t̂n [MPa] 50

shear strength t̂τ [MPa] 25

normal failure displacement jump ∆̂n [µm] 0.05

shear failure displacement jump ∆̂τ [µm] 0.025

b

εεε
M

εεε
M

y1 y2

y3

Fig. 3.9-2: Sandwich-test

Consistent linearization vs. weak-coupling

Fig. 3.9-3 shows the results for a consistent linearization of the nonlinear system of equations

and for a weak-coupling at the subcell-level under a macro strain ǫ022. As expected, the difference

between the numerically exact solution and the weak-coupling one depends on the used macro

step size ∆ǫ022. A very small step size (∆ǫ022 = 10−6) must be chosen to minimize the deviation.
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Fig. 3.9-3: Comparison between weak coupling and consistent linearization

Chaboche

Fig. 3.9-4 illustrates the influence of varying the failure displacement jump ∆nf on the effective

stress-strain-curve by using Chaboche’s model. This variation affects the entire macroscopic

course including strength and softening area. The smaller the failure displacement jump the

steeper the decrease after reaching the maximum stress. A failure displacement jump of ∆nf =

0.02µm leads to loss of convergence of Newton’s method at the maximum point. The stress

increase after its drop is caused by the bearing.

Lissenden

The parameter study by using Lissenden’s model and varying the failure displacement jump is

presented in Fig. 3.9-5 (a). The effective stress-strain-curve is the same for all parameter sets up

to reaching the stress criterion (3.4-14). Afterwards, the macroscopic behavior differs heavily.

The iteration process stops at the stress criterion for the smallest chosen failure parameter again.

The stress increases after the softening area because of the bearing.
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Fig. 3.9-4: Traction-separation-model by Chaboche: effective stress-strain-curve 〈σ22〉-〈ε22〉 for different
prescribed failure displacement jumps

Camanho and Davila

Fig. 3.9-5 (b) shows the effective stress-strain-curve created by the use of Camanho and Davila’s

model for the interface-subcell on the microscopic level. The linear-softening area of this model is

clearly visible in the macroscopic answer. Again, the smallest chosen failure displacement jump

leads to loss of convergence of Newton’s method and the stress increase is caused by the bearing.
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Fig. 3.9-5: Effective stress-strain-curve 〈σ22〉-〈ε22〉 for different prescribed failure displacement jumps
(a) Traction-separation-model by Lissenden (b) Traction-separation-model by Camanho und
Davila
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4 Extended Finite-Element-Method (X-FEM)
M. Donhauser, M. Schmerbauch, A. Matzenmiller

In a multiscale analysis the HFGMC with cohesive interface damage provides the effective mate-

rial stiffness at each gaussian point. The damage evolution at the micro scale leads at a critical

damage state to crack initiation at the macro scale. The crack is then taken into account mesh

independent using the extended finite element method. The critical damage state ωc where the

crack initiates can be defined by:

• the damaged state where failure of the RUC occurs, see Fig. 4.0-1 (a)

or

• the point of stress maximum before the softening range, see Fig. 4.0-1 (b).

〈σ〉 〈σ〉

〈ǫ〉 〈ǫ〉

failure

(a) (b)

〈σmax〉

Fig. 4.0-1: Effective stress-strain-curve of an arbitrary Gaussian point with macro crack initiation cri-
terion: (a) point of failure (b) stress maximum

4.1 Spatial Discretization

The Extended Finite-Element-Method (XFEM) firstly published in [6] and [23] is a numerical

method of calculation, which enables a mesh-independent representation of discontinuities such

as cracks in a finite element model. The fundamental difference to the classical Finite-Element-

Method (FEM) is an enhanced displacement approach. In the X-FEM the displacement field

approach uh is composed of a standard part corresponding to the classical FEM and an enrich-

ment part that takes the discontinuity into account:

uh(x) =
∑

i∈S

Ni(x)ui

︸ ︷︷ ︸
standard

+
∑

j∈Sc

Nj(x)ψaj

︸ ︷︷ ︸
enrichment

, (4.1-1)

where x stands for the global position vector, Ni and Nj for isoparametric shape functions, ui

for the unknown nodal displacements, ψ for the enrichment function of the discontinuity and aj

for the additional unknowns due to the enrichment. The set S includes all nodes of the finite-

element model and the set Sc only those which should be enriched additionally. The following
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4.2 Element Stiffness

enhanced approach captures the problem of a crack (strong discontinuity) in a two-dimensional

FE-model:

uh(x) =
∑

i∈S

Ni(x)ui +
∑

j∈SCTE

Nj(x)
[ 4∑

k=1

(
F k(x) − F k(xj)

)
bk

j

]
+
∑

l∈SCE

Nl(x)
(
H(x) −H(xl)

)
al

(4.1-2)

where the enrichment functions F k represent the singularity at the crack tip and the Heaviside

function H the jump of the displacement field because of the crack. For classification, a plate

with an inclined crack and the discretized XFEM-model is illustrated in Fig. 4.1-1 (a)-(b). The

discretized FE-model consists of four different element types as shown in Fig. 4.1-1 (b). The

element nodes surrounded by a blue box belongs to the set SCTE and are enriched by the crack

tip functions Fk as well as the nodes surrounded by an orange box belongs to the set SCE and

are enriched by the Heaviside function H.

(a) (b)x x

yy x
x

I)

II)

III)

IV)

Fig. 4.1-1: (a): Plate with an inclined crack, (b): Discretized XFEM-model with different element types
I) solid element, II) cut element, III) crack tip element, IV) blending element

4.2 Element Stiffness

Cut element

A crack visualized by a solid line separates a two-dimensional cut element into two parts (domain

Ω+ and Ω−), having 16 element degrees of freedom (DOF), 8 due to the classical displacement

approach and 8 due to the enrichment, see Fig. 4.2-1. The Heaviside function is used to represent

the jump in the displacement field across the crack in the entire element. Thus, the displacement

approach at the element level is given by:

ue(x) =
4∑

i=1

Niui +
4∑

i=1

Ni

(
H(x) −H(xi)

)

︸ ︷︷ ︸
Ψi

ai . (4.2-1)

The isoparametric shape functions Ni are defined in the natural coordinates (ξ, η) as follows:

N1 =
1

4
(1 − ξ) (1 − η) N2 =

1

4
(1 + ξ) (1 − η) (4.2-2)

N3 =
1

4
(1 + ξ) (1 + η) N4 =

1

4
(1 − ξ) (1 + η) (4.2-3)
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as well as the Heaviside function H:

H(x) = +1 ∀x ∈ Ω+ (4.2-4)

H(x) = −1 ∀x ∈ Ω− , (4.2-5)

where Ω+ is the upper and Ω− lower domain, see Fig. 4.2-1. The displacement approach (4.2-1)

is written in matrix notation

ue =

[
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]

︸ ︷︷ ︸
NStd




u1

v1
...
u4

v4




︸ ︷︷ ︸
u

+

[
Ψ1 0 Ψ2 0 Ψ3 0 Ψ4 0

0 Ψ1 0 Ψ2 0 Ψ3 0 Ψ4

]

︸ ︷︷ ︸
NEnr




a1x

a1y
...
a4x

a4y




︸ ︷︷ ︸
a

(4.2-6)

ue =
[
NStd NEnr

][u
a

]
, (4.2-7)

where NStd stands for the “shape function matrix” and NEnr for the “enrichment function

matrix”. The strain tensor is given by

εεε =



ε11

ε22

ε12


 =




∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x




︸ ︷︷ ︸
D

[
u
v

]
, (4.2-8)

where D is the differential-operator and (u, v) the displacement field. Applying Eq. (4.2-8) to

u3, a3x

u1, a1x u2, a2x

u4, a4x

v4, a4y v3, a3y

v1, a1y v2, a2y

1© 2©

4© 3©

y

x

x

crack

Ω+

Ω−

Fig. 4.2-1: Cut element with nodal degrees of freedom

the displacement field (4.2-7), the approximated strain tensor becomes

ǫǫǫe =
[
BStd BEnr

]
[
u

a

]
= B̃ũ (4.2-9)

with the operators

BStd = DN =




N1,x 0 N2,x 0 N3,x 0 N4,x 0

0 N1,y 0 N2,y 0 N3,y 0 N4,y

N1,y N1,x N2,y N2,x N3,y N2,x N4,y N4,x


 (4.2-10)

BEnr = DΨΨΨ =




Ψ1,x 0 Ψ2,x 0 Ψ3,x 0 Ψ4,x 0

0 Ψ1,y 0 Ψ2,y 0 Ψ3,y 0 Ψ4,y

Ψ1,y Ψ1,x Ψ2,y Ψ2,x Ψ3,y Ψ2,x Ψ4,y Ψ4,x


 . (4.2-11)
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The derivation of the isoparametric shape functions are:

Ni,x =
∂Ni

∂ξ

∂ξ

∂x
+
∂Ni

∂η

∂η

∂x
Ni,y =

∂Ni

∂ξ

∂ξ

∂y
+
∂Ni

∂η

∂η

∂y
(4.2-12)

and of the enrichment functions:

Ψi,x = Ni,x (H(x) −H(xi)) Ψi,y = Ni,y (H(x) −H(xi)) (4.2-13)

with

H(x),x =





1 at crack

0 else
. (4.2-14)

Assuming linear-elastic material behavior

σσσ = Cǫǫǫ , (4.2-15)

where C denotes the fourth order elasticity tensor. The internal virtual work δAe
int at the element

level

δAe
int =

∫

Ωe

δǫǫǫ :σσσ dΩ , (4.2-16)

becomes

δAe
int = δũT

e

∫

Ωe

B̃TCB̃ dΩ

︸ ︷︷ ︸
ke

ũe with B̃ =
[
BStd BEnr

]
(4.2-17)

by using the strain tensor (4.2-9) and the constitutive model (4.2-15). The integral term in

Eq. (4.2-17) is the stiffness matrix ke with ke ∈ R
16×16 of the cut element:

ke =

∫

Ωe

B̃TCB̃dΩ (4.2-18)

=



∫

Ωe
BStdT

CBStddΩ
∫

Ωe
BStdT

CBEnrdΩ

∫
Ωe

BEnrT

CBStddΩ
∫

Ωe
BEnrT

CBEnrdΩ


 =




k11 k12

k21 k22


 . (4.2-19)

Since the Heaviside function is contained in the matrices k12 and k21, the integrand is not con-

tinuous over the integration domain. To evaluate the integrals of these sub-stiffness matrices, a

subdivision of the integration domain is necessary, see for instance [12] and [13].
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Crack tip element

This element type contains the crack tip and is only cut in a defined area, see Fig. 4.2-2. The

displacement field is solely discontinuous across the crack. Moreover, the enrichment functions

must be able to represent the stress singularity at the crack tip. Parts of the analytical solution

given by the linear elastic fracture mechanics (LEFM) for linear elastic and isotropic materials

have these properties and are used to create the enrichment functions of the crack tip element,

see [6]:

F 1(r, θ) =
√
r sin

(θ
2

)
(4.2-20)

F 2(r, θ) =
√
r cos

(θ
2

)
(4.2-21)

F 3(r, θ) =
√
r sin

(θ
2

)
sin(θ) (4.2-22)

F 4(r, θ) =
√
r cos

(θ
2

)
sin(θ) . (4.2-23)

The enrichment functions F 1, F 2, F 3 and F 4 are defined in a polar coordinate system (r, θ)

at the crack tip, see Fig. 4.2-2. The element has 40 degrees of freedom, 8 nodal displacements

ui and additional 32 unknowns bk
j by the enrichment. Hence, the displacement approach at the

element level reads as follows:

ue(x) =
4∑

i=1

Niui +
4∑

j=1

Nj

( 4∑

k=1

(
F k(x) − F k(xj)

))
bk

j (4.2-24)

or in matrix-vector notation

ue(x) = [N1 N2 N3 N4 ΦΦΦ1 ΦΦΦ2 ΦΦΦ3 ΦΦΦ4]




u1

u2

u3

u4

b1

b2

b3

b4




, (4.2-25)

with the sub-matrices of the shape functions Ni, of the enrichment functions ΦΦΦi and the sub-

vectors at node i:

Ni =

[
Ni 0

0 Ni

]
, ui =

[
ui

vi

]
, (4.2-26)

ΦΦΦi =

[
F 1

i 0 F 2
i 0 F 3

i 0 F 4
i 0

0 F 1
i 0 F 2

i 0 F 3
i 0 F 4

i

]
, (4.2-27)

bi =
[
b1

ix b1
iy b2

ix b2
iy b3

ix b3
iy b4

ix b4
iy

]T
. (4.2-28)

Using Eq. (4.2-8) and Eq. (4.2-25) the strain at the element level is obtained:
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Fig. 4.2-2: Crack tip element with nodal degrees of freedom and local Cartesian (x̄, ȳ) and polar coor-
dinate system (r, θ) at the crack tip

εεεe =
[

B
Std

︷ ︸︸ ︷
BStd

1 BStd
2 BStd

3 BStd
4

B
CT

︷ ︸︸ ︷
BCT

1 BCT
2 BCT

3 BCT
4

]
︸ ︷︷ ︸

B̂




u1

u2

u3

u4

b1

b2

b3

b4




︸ ︷︷ ︸
û

= B̂û (4.2-29)

with the corresponding operators

BStd
i =



Ni,x 0

0 Ni,y

Ni,y Ni,x


 BCT

i =



F 1

i,x 0 F 2
i,x 0 F 3

i,x 0 F 4
i,x 0

0 F 1
i,y 0 F 2

i,y 0 F 3
i,y 0 F 4

i,y

F 1
i,y F 1

i,x F 2
i,y F 2

i,x F 3
i,y F 3

i,x F 4
i,y F 4

i,x


 (4.2-30)

and derivations

F k
i,x = Ni,x

(
F k(x) − F k(xi)

)
+NiF

k
,x (4.2-31)

F k
i,y = Ni,y

(
F k(x) − F k(xi)

)
+NiF

k
,y . (4.2-32)

The derivations of the crack tip enrichment functions F k
,x and F k

,y are calculated by the relation

between the global coordinate system (x, y) and the local coordinate systems at the crack tip

and using the chain rule twice, see for details [17]:

F 1
,x = − 1

2
√
r

sin

(
θ

2

)
cos(α) − 1

2
√
r

cos

(
θ

2

)
sin(α) (4.2-33)

F 2
,x =

1

2
√
r

cos

(
θ

2

)
cos(α) − 1

2
√
r

sin

(
θ

2

)
sin(α) (4.2-34)

F 3
,x = − 1

2
√
r

sin

(
3θ

2

)
sin(θ)cos(α) − 1

2
√
r

(
sin

(
θ

2

)
+ sin

(
3θ

2

)
cos(θ)

)
sin(α) (4.2-35)

F 4
,x = − 1

2
√
r

cos

(
3θ

2

)
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Using Eq. (4.2-29) and Eq. (4.2-16), the virtual work of the element level becomes:

δAe
int = δûT

e

∫

Ωe

B̂TCB̂dΩ

︸ ︷︷ ︸
ke

ûe with B̂ =
[
BStd BCT

]
, (4.2-41)

where the integral term denotes the element stiffness matrix of the crack tip element

ke =

∫

Ωe

B̂TCB̂ dΩ (4.2-42)

=



∫

Ωe
BStdT

CBStddΩ
∫

Ωe
BStdT

CBCTdΩ

∫
Ωe

BCTT

CBStddΩ
∫

Ωe
BCTT

CBCTdΩ


 =




k11 k12

k21 k22


 ke ∈ R

40×40 . (4.2-43)

Because of the trigonometric functions and the
√
r singularity in the derivations of the enrich-

ment functions, see Eqs. (4.2-33) - (4.2-40), the evaluation of the integrals of the stiffness matrix

with the standard Gaussian quadrature leads to inaccurate results. Thus, the crack tip element

is subdivided into sub-triangles for the integration procedure and each domain is integrated by

the “almost polar integration method” proposed by [20] to achieve accurate results.

4.3 Multiscale Analysis

The finite-element program Feap [26] in its version 8.2 is used to implement the Extended Finite-

Element-Method, presented in the previous sections. So, the cut element, crack tip element and

blending element are programmed as user elements. In a first step, the linear-elastic HFGMC

is employed as user material model in the finite element program Feap. The extended finite

2a

l

l
x1x1

x2x2

σ∞

22

σ∞

22

σ∞

22

FE-Model

(a) (b)

Fig. 4.3-1: (a): Plate under tensile load with crack (red) inside, (b): FE-model of the plate with applied
boundary conditions

element routines are modified in such a way that the HFGMC is called at each Gaussian point

and provides the necessary effective stiffness. A coupled simulation is conducted of a “infinite“

plate under tensile load (Mode-I) with a central straight crack inside, see Fig. 4.3-1, to verify the

implementation and compare the results to analytical ones. Since isotropic enrichment functions

(4.2-20) - (4.2-23) are used, the material parameters of the HFGMC are chosen to represent
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isotropic material behavior at the microscale. The square plate has the following dimensions

and material parameters

• length: l = 30 mm

• bulk modulus K = 175000 MPa

• shear modulus G = 80769 MPa .

The crack length is 2a = 2 mm and the applied tensile load is σ∞
22 = 100 MPa. The plate is

discretized with 61 × 63 = 3843 finite elements in plane stress. A part of the deformed mesh

configuration is shown in Fig. 4.3-2 (a). The enriched element around the crack can represent the

deformation expected because the mesh distort in the area. Fig. 4.3-2 (b) shows the simulation

results of the predicted stress distribution in load direction. The highest stress values are in front

of the crack tip. The theoretical solution shows the same results, which has a stress singularity

there. This result corresponds to the theoretical solution which has an singularity in the stress

field at the crack tip. The stress has the lowest values in the centre of the crack, where the gap is

visible. The stress distribution reaches the applied boundary magnitude in a sufficient distance

from the crack and its tip, respectively. It is possible to consider in the multiscale analysis the

stress distribution in the RUC at the micro scale. The area in front of the crack tip is the most

important region in that case. Because of the symmetry of the problem (geometry and load

application), it is sufficient to consider only one crack tip, here the right crack tip is chosen, see

Fig. 4.3-3 (a). The analytical solution of the stress field in front of the crack tip (x1 ≥ 0 and

(a)

 2.03E+01
 3.27E+01
 4.51E+01
 5.75E+01
 6.98E+01
 8.22E+01
 9.46E+01
 1.07E+02
 1.19E+02
 1.32E+02
 1.44E+02

 7.97E+00

 1.56E+02

(b)

Fig. 4.3-2: (a): Part of the deformed mesh configuration magnified 500 times, (b):Contour plot of the
stress distribution σ22 for the plate with interior crack at the macro scale

x2=0) is given by [18]:

σ22 = σ∞
22

x1

a
√

(x1/a)2 − 1
, (4.3-1)

where a is the half crack length and x1 denotes the axis. In Fig. 4.3-3 (b), the predicted stress

values at the Gaussian points in front of the crack tip as well as the analytical solution of the

stress field (4.3-1) are depicted. Furthermore, the stress distribution in the RUC is visible for

37



4 Extended Finite-Element-Method (X-FEM)

certain Gaussian points, which is homogenous since a homogenous microstructure is considered.

The largest numerical stress value and its deviation to the analytical solution is obtained at the

closest Gaussian point with the shortest distance to the crack tip (x1 =0.01 mm). The deviation

between numerical and analytical solution declines with increasing distance from the crack tip.

These first results show the HFGMC and the XFEM are implemented correct and the multiscale

analysis works.
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Fig. 4.3-3: (a): FE-mesh in front of crack tip with position of Gaussian points for stress evaluation,
(b):Comparison of analytical and numerical solution at macroscale as well as microscopic
stress distribution

38



References

References

[1] J. Aboudi, Constitutive behaviour of multiphase metal matrix composites with interfacial
damage by the generalized cells model, in Damage in Composite Materials, G. Z. Voyiadjis,
ed., Elsevier Science, 1993.

[2] J. Aboudi, S. Arnold, and B. Bednarcyk, Micromechanics of Composite Materials:
A Generalized Multiscale Analysis Approach, Elsevier Science, 2012.

[3] J. Aboudi, M.-J. Pindera, and S. M. Arnold, Linear thermoelastic higher-order theory
for periodic multiphase materials, Journal of Applied Mechanics, 68 (2001), pp. 697–707.

[4] H. Altenbach, J. Altenbach, and R. Rikards, Einführung in die Mechanik der
Laminat- und Sandwichtragwerke, Deutscher Verlag für Grundstoffindustrie Stuttgart, 1996.

[5] Y. Bansal and M.-J. Pindera, Testing the predictive capability of the high-fidelity gene-
ralized method of cells using an efficient reformulation, NASA/CR–2004, (2004).

[6] T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal
remeshing, International Journal for Numerical Methods in Engineering, 45 (1999), pp. 601–
620.

[7] T. Belytschko, W. Liu, B. Moran, and K. Elkhodary, Nonlinear Finite Elements
for Continua and Structures, vol. 2 Auflage, Wiley, 2014.

[8] J. C. Brewer and P. A. Lagace, Quadratic Stress Criterion for Initiation of Delami-
nation, Journal of Composite Materials, 22 (1988), pp. 1141–1155.

[9] F. Burbulla, Kontinuumsmechanische und bruchmechanische Modelle für Werkstoffver-
bunde:, Berichte des Instituts für Mechanik, Kassel University Press, 2015.

[10] P. P. Camanho and C. G. Dávila, Mixed-mode decohesion finite elements for the simu-
lation of delamination in composite materials, tech. rep., National Aeronautics and Space
Administration NASA/TM-2002-211737, 2002.

[11] J. L. Chaboche, R. Girad, and A. Schaff, Numerical analysis of composite systems
by using interphase/interface models, Computational Mechanics, 20 (1997), pp. 3–11.

[12] J. Dolbow, N. Moës, and T. Belytschko, Discontinuous enrichment in finite elements
with a partition of unity method, Finite Elements in Analysis and Design, 36 (2000), pp. 235–
260.

[13] T. P. Fries and T. Belytschko, The extended/generalized finite element method: An
overview of the method and its applications, International Journal for Numerical Methods
in Engineering, 84 (2010), pp. 253–304.

[14] R. Haj-Ali and J. Aboudi, A new and general formulation of the parametric hfgmc mi-
cromechanical method for two and three-dimensional multi-phase composites, International
Journal of Solids and Structures, 50 (2013), pp. 907–919.
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A Components of Subcell-Stiffness Matrix

Solid subcell-stiffness:
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