AI4REALNET

AI for Real-world NETwork operation

The scope of AI4REALNET covers the perspective of AI-based solutions addressing critical systems (electricity, railway, and air traffic management) modelled by networks that can be simulated, and are traditionally operated by humans, and where AI systems complement and augment human abilities. It has two main strategic goals: 1) to develop the next generation of decision-making methods powered by supervised and reinforcement learning, which aim at trustworthiness in AI-assisted human control with augmented cognition, hybrid human-AI co-learning and autonomous AI, and 2) to boost the development and validation of novel AI algorithms, by the consortium and AI community, through existing open-source digital environments capable of emulating realistic scenarios of physical systems operation and human decision-making.
The core elements are: a) AI algorithms mainly composed by supervised and reinforcement learning, unifying the benefits of existing heuristics, physical modelling of these complex systems and learning methods, as well as, a set of complementary techniques to enhance transparency, safety, explainability and human acceptance; b) human-in-the-loop decision making for co-learning between AI and humans, considering integration of model uncertainty, human cognitive load and trust; c) autonomous AI systems relying on human supervision, embedded with human domain knowledge and safety rules.
The AI4REALNET framework will be validated in 6 uses cases driven by industry requirements, across 3 network infrastructures with common properties. The use cases are focused on critical challenges and tasks of network operators, considering strategic long-term goals, such as decarbonisation, digitalisation, and resilience to disturbances, and are formulated in a unified sequential decision problem where many AI and non-AI algorithms can be applied and benchmarked.


Project Details

Contact PersonSebastian Wende-von Berg, Eduardo Vilches
Duration01.10.2023 - 31.03.2027
PartnerInstituto de Engenhariade Sistemas E Computadores, Tecnologia e Ciencia (INESC-TEC, Portugal), Institut de Recherche Technologique System X (IRTSX, Frankreich), Fraunhofer IEE (FhG, Deutschland), Politecnico di Milano (POLIMI, Italien), Universiteit van Amsterdam (UvA, Niederlande), Techninsche Universiteit Delft (TUD, Niederlande), Linkopings Universiteit (LiU, Schweden), EnliteAI GmbH (ENLITEAI, Österreich), RTE Reseau de Transport d‘Electricite (RTE, Frankreich), Tennet TSO BV (TENNET, Niederlande), DB Netz AG (DB, Deutschland), Navegacao Aerea de Portugal (NAV, Portugal), Zurcher Hochschule für Angewandte Wissenschaften (ZHAW, Schweiz), Fachhochschule Nordwestschweiz (FHNW, Schweiz), Schweizerische Bundesbahnen SBB (SBB, Schweiz)
FundingEuropean Commission under the Horizon Europe Research and Innovation Programme