Publikationen
2024
Antas P, Cleveland A, Contessotto P, Schaffrath R (2024) TrendsTalk. Science Around the World. Trends Mol Med30: 107-109. doi: 10.1016/j.molmed.2023.12.007 |
2023
Ütkür K, Schmidt S, Mayer K, Klassen R, Brinkmann U, Schaffrath R (2023) DPH1 gene mutations identify a candidate SAM pocket in radical enzyme Dph1•Dph2 for diphthamide synthesis on EF2. Biomolecules13: 1655. |
Helm M, Bohnsack M, CarellT, DalpkeA, EntianK-D, Ehrenhofer-MurrayAE, FicnerR, Hammann C, Höbartner C, JäschkeA, JeltschA, KaiserS, Klassen R, Leidel S, Marx A, Mörl M, Meier J, Meister G, Rentmeister A, Rodnina M, Roignant J-Y, Schaffrath R, Stadler PF, Stafforst T (2023) Experience with German research consortia in the field of Chemical Biology of Native Nucleic Acid Modifications. ACS Chem Biol12: 2441-2449. |
Matos GS, Vogt L, Santos RS, Devilars A, Yoshinaga MY, Miyamoto S, Schaffrath R, Montero-Lomeli M, Klassen R (2023) Lipidome remodelling in response to nutrient replenishment requires the tRNA modifier Deg1/Pus3 in yeast. Mol Microbiol120: 893-905. |
Ütkür K, Mayer K, Khan M, Manivannan T, Schaffrath R, Brinkmann U (2023) DPH1 and DPH2 variants that confer susceptibility to diphthamide deficiency syndrome in human cells and yeast models. Dis Model Mech16: dmm050207. |
Arend M, Ütkür K, Hawer H, Mayer K, Brinkmann U, Adrian L, Ranjan N, Schaffrath R (2023) Yeast gene KTI13 (alias DPH8) operates in the initiation step of diphthamide synthesis on elongation factor 2. Microb Cell 10: 195-203. |
Jaciuk M, Scherf D, Kaszuba K, Gaik M, Rau A, Koscielniak A, Krutyhołowa R, Rawski M, Indyka P, Graziadei A, Chramiec-Głąbik A, Biela A, Dobosz D, LinTY, Abbassi NEH, Hammermeister A, Rappsilber J, Kosinski J, Schaffrath R, Glatt S (2023) Cryo-EM structure of the fully assembled Elongator complex. Nucleic Acids Res51: 2011-2032. |
2022
Jun SE, Cho KH, Manzoor MA, Hwang TY, Kim YS, Schaffrath R, Kim GT (2022) AtELP4, a subunit of the Elongator complex in Arabidopsis, mediates cell proliferation and dorsoventral polarity during leaf morphogenesis. Front Plant Sci13: 1033358. |
Ravichandran KE, Kaduhr L, Skupień-Rabian B, Shvetsova E, Sokołowski M, Krutyhołowa R, Kwasana D, Brachmann C, Lin S, Perez SG, Wilk P, Kösters M, Grudnik P, Jankowska U, Leidel SA, Schaffrath R, Glatt S (2022) E2/E3 independent ubiquitin-like conjugation by Urm1 is directly coupled to cysteine persulfidation. EMBO J, e111318, online ahead of print doi: 10.15252/embj.2022111318 |
Zhang H, Quintana J, Ütkür K, Adrian L, Hawer H, Mayer K, Gong X, Castanedo L, Schulten A, Janina N, Peters M, Wirtz M, Brinkmann U, Schaffrath R, Krämer U (2022) Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis. Nat Comm 13: 4009. doi: 10.1038/s41467-022-31712-7 |
Shankar SP, Grimsrud K, Lanoue L, Egense A, Wills B, Hörberg J, Albadi L, Mayer K, Ütkür K, Monaghan KG, Krier J, Stoler J, Alnemer M, Shankar PR, Schaffrath R, Alkuraya FS, Brinkmann U, Eriksson LA, Lloyd K, Rauen KA; Undiagnosed Diseases Network (2022) A novel DPH5 related diphthamide-deficiency syndrome causing embryonic lethality orprofound neurodevelopmental disorder. Genet Med 24: 1567-1582. doi: 10.1016/j.gim.2022.03.014 |
Freije BJ, Freije WM, Do TU, Adkins GE, Bruch A, Hurtig JE, Morano KA, Schaffrath R, West JD (2022) Identifying interaction partners of yeast protein disulfide isomerases using a small thiol-reactive cross-linker: implications for secretory pathway proteostasis. Chem Res Toxicol35: 326-336. doi: 10.1021/acs.chemrestox.1c00376 |
Shankar, SP, Grimsrud K, Lanoue L, Egense A, Willis B, Shankar P, Horberg J, Albadi L, Mayer K, Ütkür K, Monaghan K, Krier J, Stoler J, Schaffrath R, Alkuraya F, Brinkmann U, Eriksson L, Lloyd K, Rauen KA (2022) DPH5: a novel gene causing diphthamide biosynthesis disorders. J Investig Med70: 236. doi: 10.15252/embj.2022111318 |
2021
Kaduhr L, Brachmann C, Ravichandran KE, West JD, Glatt S, Schaffrath R (2021) Urm1, not quite a ubiquitin-like modifier? Microb Cell8: 256-261. doi: 10.15698/mic2021.11.763 |
Khonsari B, Klassen R, Schaffrath R (2021) Role of SSD1 in phenotypic variation of yeast strains lacking DEG1-dependent pseudouridylation. Int J Mol Sci 22: 8753. doi: 10.3390/ijms22168753 |
2020
Bruch, A., Klassen, R., Schaffrath, R., 2020. Induction of protein aggregation and starvation response by tRNA modification defects. Current Genetics. https://doi.org/10.1007/s00294-020-01103-w |
Bruch, A., Laguna, T., Butter, F., Schaffrath, R., Klassen, R., 2020. Misactivation of multiple starvation responses in yeast by loss of tRNA modifications. Nucleic Acids Research 48, 7307–7320. https://doi.org/10.1093/nar/gkaa455 |
Schäck MA, Jablonski KP, Gräf S, Klassen R, Schaffrath R, Kellner S, Hammann C 2020. Eukaryotic life without tQ(CUG): the role of Elongator-dependent tRNA modifications in Dictyostelium discoideum. Nucleic Acids Research 48, 7899–7913. https://doi.org/10.1093/nar/gkaa560 |
Brachmann C, Kaduhr L, Jüdes A, Keerthiraju ER, West JD, Glatt S, Schaffrath R, 2020. Redox requirements for ubiquitin-like urmylation of Ahp1, a 2-Cys peroxiredoxin from yeast. REDOX BIOLOGY 30, 101438. https://doi.org/10.1016/j.redox.2020.101438 |
Pollo-Oliveira L, Klassen R, Davis N, Ciftci A, Bacusmo JM, Marinelli M, DeMott MS, Begley TJ, Dedon PC, Schaffrath R, de Crécy-Lagard V, 2020. Loss of Elongator- and KEOPS-Dependent tRNA Modifications Leads to Severe Growth Phenotypes and Protein Aggregation in Yeast. BIOMOLECULES 10, 322.https://doi.org/10.3390/biom10020322 |
Hawer H, Mendelsohn BA, Mayer K, Kung A, Malhotra A, Tuupanen S, Schleit J, Brinkmann U, Schaffrath R, 2020. Diphthamide-deficiency syndrome: a novel human developmental disorder and ribosomopathy. EUROPEAN JOURNAL OF HUMAN GENETICS 28, 1497–1508. https://doi.org/10.1038/s41431-020-0668-y |
2019
Jacob D, Thüring K, Galliot A, Marchand V, Galvanin A, Ciftci A, Scharmann K, Worpenberg L, Stock N, Roignant J-Y, Leidel S, Motorin Y, Schaffrath R, Klassen R, Helm M, 2019. Absolute Quantification of Noncoding RNA by Microscale Thermophoresis. Angewandte Chemie International Edition 58, 9565–9569. https://doi.org/10.1002/anie.201814377 |
Hawer H, Hammermeister A, Ravichandran KE, Glatt S, Schaffrath R, Klassen R, 2019. Roles of Elongator Dependent tRNA Modification Pathways in Neurodegeneration and Cancer. GENES. https://doi.org/10.3390/genes10010019 |
Krutyhołowa R, Hammermeister A, Zabel R, Abdel-Fattah W, Reinhardt-Tews A, Helm M, Stark MJR, Breunig KD, Schaffrath R, Glatt S, 2019. Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator. Nucleic Acids Research 47, 4814–4830. https://doi.org/10.1093/nar/gkz190 |
Jacob D, Thüring K, Galliot A, Marchand V, Galvanin A,Ciftci A, Scharmann K, Worpenberg L, Stock N, Roignant J-Y, Leidel S, Motorin Y, Schaffrath R, Klassen R, Helm M (2019) Absolute Quantifizierung nicht-kodierender RNA-Spezies mittels Mikroskala-Thermophorese. Angew Chem 131: 9666-9670. |
2018
Klassen, R., Schaffrath, R., Buzzini, P., Ganter, P.F., 2018. Antagonistic Interactions and Killer Yeasts, in: Buzzini, P., Lachance, M.-A., Yurkov, A. (Hrsg.), Yeasts in Natural Ecosystems: Ecology. Springer International Publishing, Cham, S. 229–275. https://dx.doi.org/10.3390%2Fmicroorganisms8111680 |
Schaffrath, R., 2018. Positioning Europe for the EPITRANSCRIPTOMICS challenge. RNA Biology 15, 829–831. https://doi.org/10.1080/15476286.2018.1460996 |
Schaffrath, R., Meinhardt, F., Klassen, R., 2018. Yeast Killer Toxins: Fundamentals and ApplicationsYeast Killer Toxins: Fundamentals and Applications, in: Anke, T., Schüffler, A. (Hrsg.), Physiology and Genetics: Selected Basic and Applied Aspects. Springer International Publishing, Cham, S. 87–118. https://doi.org/10.1007/978-3-319-71740-1_3 |
Carmona-Gutierrez, D., Bauer, M.A., Zimmermann, A., Aguilera, A., Austriaco, N., Ayscough, K., Balzan, R., Bar-Nun, S., Barrientos, A., Belenky, P., Blondel, M., Braun, R.J., Breitenbach, M., Burhans, W.C., Büttner, S., Cavalieri, D., Chang, M., Cooper, K.F., Corte-Real, M., Costa, V., Cullin, C., Dawes, I., Dengjel, J., Dickman, M.B., Eisenberg, T., Fahrenkrog, B., Fasel, N., Frohlich, K.-U., Gargouri, A., Giannattasio, S., Goffrini, P., Gourlay, C.W., Grant, C.M., Greenwood, M.T., Guaragnella, N., Heger, T., Heinisch, J., Herker, E., Herrmann, J.M., Hofer, S., Jimenez-Ruiz, A., Jungwirth, H., Kainz, K., Kontoyiannis, D.P., Ludovico, P., Manon, S., Martegani, E., Mazzoni, C., Megeney, L.A., Meisinger, C., Nielsen, J., Nystrom, T., Osiewacz, H.D., Outeiro, T.F., Park, H.-O., Pendl, T., Petranovic, D., Picot, S., Polcic, P., Powers, T., Ramsdale, M., Rinnerthaler, M., Rockenfeller, P., Ruckenstuhl, C., Schaffrath, R., Segovia, M., Severin, F.F., Sharon, A., Sigrist, S.J., Sommer-Ruck, C., Sousa, M.J., Thevelein, J.M., Thevissen, K., Titorenko, V., Toledano, M.B., Tuite, M.F., Voegtle, F.-N., Westermann, B., Winderickx, J., Wissing, S., Woelfl, S., Zhang, Z.J., Zhao, R.Y., Zhou, B., Galluzzi, L., Kroemer, G., Madeo, F., 2018. Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell 5, 4–31. https://doi.org/10.15698/mic2018.01.607 |
Bruch A, Klassen R, Schaffrath R, 2018. Unfolded Protein Response Suppression in Yeast by Loss of tRNA Modifications. GENES 9, 516. https://doi.org/10.3390/genes9110516 |
Klassen R, Schaffrath R, 2018. Collaboration of tRNA modifications and elongation factor eEF1A in decoding and nonsense suppression. Scientific reports 8, 12749. https://doi.org/10.1038/s41598-018-31158-2 |
Hawer H, Ütkür K, Arend M, Mayer K, Adrian L, Brinkmann U, Schaffrath R, 2018. Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. PLOS ONE 13, e0205870. https://doi.org/10.1371/journal.pone.0205870 |
Bozaquel-Morais BL, Vogt L, D’Angelo V, Schaffrath R, Klassen R, Montero-Lomeli M 2018. Protein Phosphatase Sit4 Affects Lipid Droplet Synthesis and Soraphen A Resistance Independent of Its Role in Regulating Elongator Dependent tRNA Modification. BIOMOLECULES 8, 49. https://doi.org/10.3390/biom8030049 |
Sokołowski, M., Klassen, R., Bruch, A., Schaffrath, R., Glatt, S., 2018. Cooperativity between different tRNA modifications and their modification pathways. BBA - Biochimica et Biophysica Acta 1861, 409–418. https://doi.org/10.1016/j.bbagrm.2017.12.003 |
2017
Klassen, R., Schaffrath, R., 2017. Role of Pseudouridine Formation by Deg1 for Functionality of Two Glutamine Isoacceptor tRNAs. BIOMOLECULES 7, 8. https://doi.org/10.3390/biom7010008 |
Schaffrath, R., Leidel, S.A., 2017. Wobble uridine modifications-a reason to live, a reason to die?! RNA Biology 14, 1209–1222. https://doi.org/10.1080/15476286.2017.1295204 |
Mehlgarten, C., Prochaska, H., Hammermeister, A., Abdel-Fattah, W., Wagner, M., Krutyholowa, R., Jun, S.E., Kim, G.-T., Glatt, S., Breunig, K.D., Stark, M.J.R., Schaffrath, R., 2017. Use of a Yeast tRNase Killer Toxin to Diagnose Kti12 Motifs Required for tRNA Modification by Elongator. Toxins 9, 272. https://doi.org/10.3390/toxins9090272 |
Klassen, R., Bruch, A., Schaffrath, R., 2017. Independent suppression of ribosomal+1 frameshifts by different tRNA anticodon loop modifications. RNA Biology 14, 1252–1259. https://doi.org/10.1080/15476286.2016.1267098 |
Schaffrath, R., Klassen, R., 2017. Combined tRNA modification defects impair protein homeostasis and synthesis of the yeast prion protein Rnq1. Prion 11, 48–53. https://doi.org/10.1080/19336896.2017.1284734 |
2016
Inigo, S., Durand, A.N., Ritter, A., Le Gall, S., Termathe, M., Klassen, R., Tohge, T., De Coninck, B., Van Leene, J., De Clercq, R., Cammue, B.P.A., Fernie, A.R., Gevaert, K., De Jaeger, G., Leidel, S.A., Schaffrath, R., Van Lijsebettens, M., Pauwels, L., Goossens, A., 2016. Glutaredoxin GRXS17 Associates with the Cytosolic Iron-Sulfur Cluster Assembly Pathway. Plant Physiology 172, 858–873. https://doi.org/10.1104/pp.16.00261 |
Klassen, R., Ciftci, A., Funk, J., Bruch, A., Butter, F., Schaffrath, R., 2016. tRNA anticodon loop modifications ensure protein homeostasis and cell morphogenesis in yeast. Nucleic Acids Research 44, 10946–10959. https://doi.org/10.1093/nar/gkw705 |
Schaffrath, R., Klassen, R., 2016. Killerplasmid-codierte Ribotoxin-RNasen aus Hefen. BIOspektrum 22, 16–18. https://doi.org/10.1007/s12268-016-0649-4 |
Jüdes, A., Bruch, A., Klassen, R., Helm, M., Schaffrath, R., 2016. Sulfur transfer and activation by ubiquitin-like modifier system Uba4 center dot Urm1 link protein urmylation and tRNA thiolation in yeast. Microbial Cell 3, 423–433. https://doi.org/10.15698/mic2016.11.539 |
2015
Klassen, R., Grunewald, P., Thüring, K.L., Eichler, C., Helm, M., Schaffrath, R., 2015. Loss of anticodon wobble uridine modifications affects tRNALys function and protein levels in Saccharomyces cerevisiae. PLoS ONE 11/2015, e0119261. |
Abdel-Fattah, W., Jablonowski, D., Di Santo, R., Scheidt, V., Hammermeister, A., ten Have, S., Thüring, K.L., Helm, M., Schaffrath, R., Stark, M., 2015. Phosphorylation of Elp1 by Hrr25 is required for Elongator-dependent tRNA modification in yeast. PLoS Genetics 2015, e1004931. https://doi.org/10.1371/journal.pgen.1004931 |
Kast, A., Voges, R., Schröder, M., Schaffrath, R., Klassen, R., Meinhardt, F., 2015. Auto-selection of cytoplasmic yeast virus like elements encoding toxin/anti-toxin systems involves a nuclear barrier for immunity gene expression. PLoS Genetics 11, e1005005. https://doi.org/10.1371/journal.pgen.1005005 |
Jüdes, A., Ebert, F., Bär, C., Thüring, K.L., Harrer, A., Klassen, R., Helm, M., Stark, M., Schaffrath, R., 2015. Urmylation and tRNA thiolation functions of ubiquitin-like Uba4.Urm1 systems are conserved from yeast to man. FEBS Letters 589, 904–909. https://doi.org/10.1016/j.febslet.2015.02.024 |
2014
Scheidt, V., Jüdes, A., Bär, C., Klassen, R., Schaffrath, R., 2014. Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling. Microbial Cell 1, 416–424. |
Schaffrath, R., Abdel-Fattah, W., Klassen, R., Stark, M., 2014. The diphthamide modification pathway from Saccharomyces cerevisiae – Revisited. Molecular Microbiology 94, 1213–1226. https://doi.org/10.1111/mmi.12845 |
Schaffrath, R., Stark, M., 2014. Decoding the biosynthesis and function of diphthamide, an enigmatic modification of translation elongation factor 2 (EF2). Microbial Cell 1, 203–205. |
Jun, S.E., Cho, K.-H., Hwang, J.-Y., Abdel-Fattah, W., Hammermeister, A., Schaffrath, R., Bowman, J.L., Kim, G.-T., 2014. Comparative Analysis of the Conserved Functions of Arabidopsis DRL1 and Yeast KTI12. Molecules and Cells 38, 243–250. https://doi.org/10.14348/molcells.2015.2297 |
2013
Uthman, S., Bär, C., Liu, S., ten Have, S., Giorgini, F., Stark, M., Schaffrath, R., Scheidt, V., 2013. The Amidation Step of Diphthamide Biosynthesis in Yeast Requires DPH6, a Gene Identified through Mining the DPH1-DPH5 Interaction Network 9, e1003334. https://doi.org/10.1371/journal.pgen.1003334 |
Abdel-Fattah, W., Scheidt, V., Uthman, S., Stark, M., Schaffrath, R., 2013. Insights into Diphthamide, Key Diphtheria Toxin Effector. Toxins 5, 958–968. https://doi.org/10.3390/toxins5050958 |
Eichler, C., Herberg, F.W., Schmidt, F., Schaffrath, R., 2013. Does the bee locus encode an additional or alternative pilus in Enterococcus faecalis?, in: Mendez-Vilas, A. (Hrsg.), Worldwide Research Efforts in the Fighting against Microbial Pathogens: From Basic Research to Technological Developments. BrownWalker Press, Boca Raton, FL, USA, S. 134–138. |
Woodacre, A., Jablonowski, D., Lone, M., Schneiter, R., Giorgini, F., Schaffrath, R., 2013. A novel Sit4 phosphatase complex is involved in the response to ceramide stress in yeast. Oxidative Medicine and Cellular Longevity 2013, 129645. https://doi.org/10.1155/2013/129645 |
2012
2011
2010
Mehlgarten, C., Jablonowski, D., Wrackmeyer, U., Tschitschmann, S., Sondermann, D., Jäger, G., Gong, Z., Byström, A., Schaffrath, R., Breunig, K.D., 2010. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Molecular Microbiology 76, 1082–1094. https://doi.org/10.1111/j.1365-2958.2010.07253.x |
2009
Mehlgarten, C., Jablonowski, D., Breunig, K.D., Stark, M., Schaffrath, R., 2009. Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Molecular Microbiology 73, 869–881. https://doi.org/10.1111/j.1365-2958.2009.06811.x |
Jablonowski, D., Täubert, J.-E., Stark, M., Bär, C., Schaffrath, R., 2009. Distinct Subsets of Sit4 Holophosphatases Are Required for Inhibition of Saccharomyces cerevisiae Growth by Rapamycin and Zymocin. Eukaryotic Cell 8, 1637–1647. https://doi.org/10.1128/EC.00205-09 |
2008
Zabel, R., Bär, C., Mehlgarten, C., Schaffrath, R., 2008. Yeast alpha-tubulin suppressor Ats1/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11. Molecular Microbiology 69, 175–187. https://doi.org/10.1111/j.1365-2958.2008.06273.x |
Nandakumar, J., Schwer, B., Schaffrath, R., Shuman, S., 2008. RNA repair: An antidote to cytotoxic eukaryal RNA damage. Molecular Cell 31, 278–286. https://doi.org/10.1016/j.molcel.2008.05.019 |
Bär, C., Zabel, R., Liu, S., Stark, M., Schaffrath, R., 2008. A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Molecular Microbiology 69, 1221–1233. |
Studte, P., Zink, S., Jablonowski, D., Bär, C., von der Haar, T., Tuite, M.F., Schaffrath, R., 2008. tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Molecular Microbiology 69, 1266–1277. https://doi.org/10.1111/j.1365-2958.2008.06358.x |
2007
Mehlgarten, C., Zink, S., Rutter, J., Schaffrath, R., 2007. Dosage suppression of the Kluyveromyces lactis zymocin by Saccharomyces cerevisiae ISR1 and UGP1. FEMS Yeast Research 7, 722–730. https://doi.org/10.1111/j.1567-1364.2007.00216.x |
Jablonowski, D., Schaffrath, R., 2007. Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochemical Society Transactions 35, 1533–1537. https://doi.org/10.1042/BST0351533 |
2006
Chen, Z., Zhang, H., Jablonowski, D., Zhou, X., Ren, X., Hong, X., Schaffrath, R., Gong, Z., Zhu, J.-K., 2006. Mutations in ABO1/ELO2, a subunit of holo-elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Molecular and Cellular Biology 26, 6902–6912. https://doi.org/10.1128/MCB.00433-06 |
Klassen, R., Jablonowski, D., Stark, M., Schaffrath, R., Meinhardt, F., 2006. Mating-type locus control of killer toxins from Kluyveromyces lactis and Pichia acaciae. FEMS Yeast Research 6, 404–413. https://doi.org/10.1111/j.1567-1364.2005.00006.x |
Jablonowski, D., Zink, S., Mehlgarten, C., Daum, G., Schaffrath, R., 2006. tRNA(Glu) wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Molecular Microbiology 59, 677–688. https://doi.org/10.1111/j.1365-2958.2005.04972.x |
2005
Zink, S., Mehlgarten, C., Kitamoto, H.K., Nagase, J., Jablonowski, D., Dickson, R.C., Stark, M., Schaffrath, R., 2005. Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. Eukaryotic Cell 4, 879–889. https://doi.org/10.1128/EC.4.5.879-889.2005 |
Schaffrath, R., Meinhardt, F., 2005. Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins, in: Schmitt MJ, S.R. (Hrsg.), Microbial Protein Toxins. Springer-Verlag, Berlin, Heidelberg, New York, S. 133–155. |
2004
Jablonowski, D., Stark, M., Fichtner, L., Schaffrath, R., 2004. The yeast elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity. Molecular Biology of the Cell 15, 1459–1469. |
Mehlgarten, C., Schaffrath, R., 2004. After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Cellular Microbiology 6, 569–580. https://doi.org/10.1111/j.1462-5822.2004.00383.x |
2003
Fichtner, L., Jablonowski, D., Schierhorn, A., Kitamoto, H.K., Stark, M., Schaffrath, R., 2003. Elongator’s toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Molecular Microbiology 49, 1297–1307. https://doi.org/10.1046/j.1365-2958.2003.03632.x |
Schaffrath, R., 2003. Genetic manipulation of the Kluyveromyces lactis killer plasmids k1 and k2, in: Wolf, K: Breunig, Barth G (Hrsg.), Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology. Springer-Verlag, Berlin, Heidelberg, S. 185–190. |
Jablonowski, D., Fichtner, L., Frohloff, F., Schaffrath, R., 2003. Chitin binding capability of the zymocin complex from Kluyveromyces lactis, in: Wolf, K: Breunig, Barth G (Hrsg.), Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology. Springer-Verlag, Berlin, Heidelberg, S. 191–194. |
Frohloff, F., Jablonowski, D., Fichtner, L., Schaffrath, R., 2003. Subunit communications crucial for the functional integrity of the yeast RNA polymerase II elongator (gamma-toxin target (TOT)) complex. Journal of Biological Chemistry 278, 956–961. https://doi.org/10.1074/jbc.M210060200 |
Schaffrath, R., 2003. Kluyveromyces lactis Zymocin: Model für mikrobielle Kompetition und Proliferation. BIOspektrum 9, 168–169. |
Fichtner, L., Jablonowski, D., Frohloff, F., Schaffrath, R., 2003. Phenotypic analysis of the Kluyveromyces lactis killer phenomenon, in: Wolf, K: Breunig, Barth G (Hrsg.), Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology. Springer-Verlag, Berlin, Heidelberg, S. 179–183. |
Mehlgarten, C., Schaffrath, R., 2003. Mutant casein kinase I (Hrr25p/Kti14p) abrogates the G1 cell cycle arrest induced by Kluyveromyces lactis zymocin in budding yeast. Molecular Genetics and Genomics 269, 188–196. |
2002
Fichtner, L., Frohloff, F., Jablonowski, D., Stark, M., Schaffrath, R., 2002. Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Molecular Microbiology 45, 817–826. https://doi.org/10.1046/j.1365-2958.2002.03055.x |
Kitamoto, H.K., Jablonowski, D., Nagase, J., Schaffrath, R., 2002. Defects in yeast RNA polymerase II transcription elicit hypersensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Molecular Genetics and Genomics 268, 49–55. |
Fichtner, L., Frohloff, F., Bürkner, K., Breunig, K.D., Larsen, M., Schaffrath, R., 2002. Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Molecular Microbiology 43, 783–791. https://doi.org/10.1046/j.1365-2958.2002.02794.x |
Klassen, R., Jablonowski, D., Schaffrath, R., Meinhardt, F., 2002. Genome organization of the linear Pichia etchellsii plasmid pPE1A: evidence for expression of an extracellular chitin-binding protein homologous to the alpha-subunit of the Kluyveromyces lactis killer toxin. Plasmid 47, 224–233. https://doi.org/10.1016/S0147-619X(02)00014-8 |
Fichtner, L., Schaffrath, R., 2002. KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Molecular Microbiology 44, 865–875. https://doi.org/10.1046/j.1365-2958.2002.02928.x |
Jablonowski, D., Schaffrath, R., 2002. Saccharomyces cerevisiae RNA polymerase II is affected by Kluyveromyces lactis zymocin. Journal of Biological Chemistry 277, 26276–26280. https://doi.org/10.1074/jbc.M203354200 |
2001
Jablonowski, D., Fichtner, L., Martin, V.J., Klassen, R., Meinhardt, F., Stark, M., Schaffrath, R., Martin, V., 2001. Saccharomyces cerevisiae cell wall chitin, the Kluyveromyces lactis zymocin receptor. Yeast 18, 1285–1299. https://doi.org/10.1002/yea.776 |
Meinhardt, F., Schaffrath, R., 2001. Extranuclear inheritance: cytoplasmic linear double-stranded DNA killer elements of the dairy yeast Kluyveromyces lactis, in: Esser, K., Lüttge, U., Kadereit, J., Beyschlag, W. (Hrsg.), Progress in Botany. Springer-Verlag, Berlin, Heidelberg, S. 51–70. |
Jablonowski, D., Frohloff, F., Fichtner, L., Stark, M., Schaffrath, R., 2001. Kluyveromyces lactis zymocin mode of action is linked to RNA polymerase II function via Elongator. Molecular Microbiology 42, 1095–1105. https://doi.org/10.1046/j.1365-2958.2001.02705.x |
Frohloff, F., Fichtner, L., Jablonowski, D., Breunig, K.D., Schaffrath, R., 2001. Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO Journal 20, 1993–2003. https://doi.org/10.1093/emboj/20.8.1993 |
Jablonowski, D., Butler, A.R., Fichtner, L., Gardiner, D., Schaffrath, R., Stark, M., 2001. Sit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin. Genetics 159, 1479–1489. |
Schaffrath, R., Meacock, P.A., 2001. An SSB encoded by and operating on linear killer plasmids from Kluyveromyces lactis. Yeast 18, 1239–1247. doi.org/10.1002/yea.773 |
2000
Schaffrath, R., Meacock, P.A., Sasnauskas, K., 2000. Use of gene shuffles to study the cytoplasmic transcription system operating on Kluyveromyces lactis linear DNA plasmids. Enzyme and Microbial Technology 26, 664–670. https://doi.org/10.1016/S0141-0229(00)00157-5 |
Schaffrath, R., Breunig, K.D., 2000. Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genetics and Biology 30, 173–190. https://doi.org/10.1006/fgbi.2000.1221 |
1999
Schaffrath, R., Meinhardt, F., Meacock, P.A., 1999. Genetic manipulation of Kluyveromyces lactis linear DNA plasmids: gene targeting and plasmid shuffles. FEMS Microbiology Letters 178, 201–210. https://doi.org/10.1111/j.1574-6968.1999.tb08678.x |
1998
Schaffrath, R., Meinhardt, F., 1998. Das Killersystem von Kluyveromyces lactis: Molekularbiologie und Biotechnik. BIOspektrum 4, 40–42. |
1997
Schaffrath, R., Meinhardt, F., Meacock, P.A., 1997. ORF7 of yeast plasmid pGHL2: Analysis of gene expression in vivo. Current Genetics 31, 190–192. https://doi.org/10.1007/s002940050195 |
Schaffrath, R., Stark, M., Struhl, K., 1997. Toxin-mediated cell cycle arrest in yeast: the killer phenomenon of Kluyveromyces lactis. BIOforum International 1, 83–85. |
Schaffrath, R., Stark, M., Struhl, K., 1997. Zymocin-mediated G(1) cell cycle arrest: Analysis of killer toxin insensitive (kti) Saccharomyces erevisiae mutants. European Journal of Cell Biology 72, 111. |
Meinhardt, F., Schaffrath, R., Larsen, M., 1997. Microbial linear plasmids. Applied Microbiology and Biotechnology 47, 329–336. https://doi.org/10.1007/s002530050936 |
1996
Schaffrath, R., Meacock, P.A., 1996. A cytoplasmic gene-shuffle system in Kluyveromyces lactis: Use of epitope tagging to detect a killer plasmid-encoded gene product. Molecular Microbiology 19, 545–554. https://doi.org/10.1046/j.1365-2958.1996.402942.x |
Sharan, R.J., Schaffrath, R., Laltanpuia, L., Schneeweiß, F., 1996. Radiotoxicity of chronic ingestion of tritiated water on liver HMG proteins of swiss albino mice. Proceedings of the National Academy of Sciences, India, Section B (Biological Sciences) 1996, 5–10. |
Schaffrath, R., Meinhardt, F., Meacock, P.A., 1996. Yeast killer plasmid pGKL2: Molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function. Molecular and General Genetics MGG 250, 286–294. |
1995
Schaffrath, R., Soond, S.M., Meacock, P.A., 1995. Cytoplasmic gene expression in yeast - A plasmid-encoded transcription system in Kluyveromyces lactis. Biochemical Society Transactions 23, S128–S128. |
Schaffrath, R., Soond, S.M., Meacock, P.A., 1995. The DNA and RNA polymerase genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. Microbiology 141, 2591–2599. https://doi.org/10.1099/13500872-141-10-2591 |
Schaffrath, R., Meacock, P.A., 1995. Kluyveromyces lactis killer plasmid pGKL2: Molecular analysis of an essential gene, ORF5. Yeast 11, 615–628. https://doi.org/10.1002/yea.320110703 |
1992
Schaffrath, R., Stark, M., Meinhardt, F., Gunge, N., 1992. Kluyveromyces lactis killer system: ORF1 of pGKL2 has no function in immunity expression and is dispesable for killer plasmid replication and maintenance. Current Genetics 21, 357–363. https://doi.org/10.1007/BF00351695 |