Aktuelle Publikationen - Akkordeon-Container
Hoping to support sustainability, countries have established policies to foster the bioeconomy (BE), based on the use of biomass and knowledge on biological principles. However, appropriate monitoring is still lacking. We estimate global key environmental footprints (FPs) of the German BE in a historic analysis from 2000–2015 and in projection until 2030. Overall, the agricultural biomass FP is dominated by animal-based food consumption, which is slightly decreasing. The forestry biomass FP of consumption could potentially shift from net import to total supply from domestic territory. Agricultural land use for consumption is triple that of domestic agricultural land (which covers half of Germany) and induced substantial land use change in other regions from 2000–2015. The FP of irrigation water withdrawals has decreased over 2000–2015 and might continue to decline in absolute terms by 2030, but the share of supply regions with water stress might increase. The climate FP of BE contributes 18–20% to the total climate FP of domestic consumption, while employment makes up 10% and value added only 8% of the total German economy. These findings imply that sufficient monitoring of the BE needs to consider both production and consumption perspectives, as well as global FPs of national economies.
The article gives a comprehensive overview of the roundwood equivalents (RE) consumed in the German bioeconomy from Germany and abroad between 1995 and 2015, i.e., the Timber Footprint of final Consumption (TFPcon). The calculation is based on an adapted version of Exiobase 3.4. The sustainability of roundwood procurement for the TFPcon is assessed. A systematic embedding of the tree compartments considered in the TFP in the context of national forest inventories and material flow analysis is presented. The results show that, in 2015, the total volume of the TFPcon of Germany is 90 Mm3 (slightly above the 1995 level) and is composed of 61% coniferous and 39% non-coniferous wood. Germany is strongly dependent on roundwood sourced from abroad and thus was a net importer of RE in 2015. Among the 17 countries with the largest supply of RE for the TFPcon, around one third very likely include large shares of roundwood procured from deforestation or clear-cutting. The self-sufficiency rate in 2015 was only 76%. It would be possible to increase domestic roundwood production by 8–41% (mainly in the hardwood sector) without exceeding the sustainability limits as defined in the WEHAM scenarios.
To feed future populations on ever-scarcer natural resources, policy initiatives aim to decrease resource footprints of food consumption. While adopting healthier diets has shown great potential to reduce footprints, current political initiatives primarily address strategies to reduce food waste, with the target of halving food waste at retail and consumption levels by 2030. Using Germany as a case study, we compare the resource-saving potential of this political target with three scenarios of nutritionally viable, plant-based dietary patterns and investigate interactions and trade-offs. By using the Food and Agriculture Biomass Input–Output model, we capture biomass, cropland, and blue water footprints of global supply chains. The results show that dietary changes are particularly effective in reducing biomass and cropland footprints, showing a decrease of up to 61% and 48%, respectively, whereas halving food waste decreases biomass and cropland footprints by 11% and 15%, respectively. For blue water savings, halving food waste is more effective: water use decreases by 14% compared to an increase of 6% for dietary change with the highest water consumption. Subsequently, a combination of the scenarios shows the highest total reduction potential. However, our findings reveal that despite reduced footprints, a dietary shift can lead to an increased amount of food waste due to the rising consumption of products associated with higher food waste shares. Therefore, policy strategies addressing both targets might be contradicting. We conclude that international and national policies can be most effective in achieving higher resource efficiency by exploiting the reduction potentials of all available strategies while simultaneously considering strategy interactions.
Here we present the first multi-model ensemble of regional climate simulations at kilometer-scale horizontal grid spacing over a decade long period. A total of 23 simulations run with a horizontal grid spacing of ~3 km, driven by ERA-Interim reanalysis, and performed by 22 European research groups are analysed. Six different regional climate models (RCMs) are represented in the ensemble. The simulations are compared against available high-resolution precipitation observations and coarse resolution (~ 12 km) RCMs with parameterized convection. The model simulations and observations are compared with respect to mean precipitation, precipitation intensity and frequency, and heavy precipitation on daily and hourly timescales in different seasons. The results show that kilometer-scale models produce a more realistic representation of precipitation than the coarse resolution RCMs. The most significant improvements are found for heavy precipitation and precipitation frequency on both daily and hourly time scales in the summer season. In general, kilometer-scale models tend to produce more intense precipitation and reduced wet-hour frequency compared to coarse resolution models. On average, the multi-model mean shows a reduction of bias from ∼ −40% at 12 km to ∼ −3% at 3 km for heavy hourly precipitation in summer. Furthermore, the uncertainty ranges i.e. the variability between the models for wet hour frequency is reduced by half with the use of kilometer-scale models. Although differences between the model simulations at the kilometer-scale and observations still exist, it is evident that these simulations are superior to the coarse-resolution RCM simulations in the representing precipitation in the present-day climate, and thus offer a promising way forward for investigations of climate and climate change at local to regional scales.
Keeping the Earth system in a stable and resilient state, in order to safeguard Earth's life support systems while ensuring that Earth's benefits, risks and related responsibilities are equitably shared, constitutes the grand challenge for human development in the Anthropocene. Here, we describe a framework that the recently formed Earth Commission will use to define and quantify target ranges for a ‘safe and just corridor’ that meets these goals. Although ‘safe’ and ‘just’ Earth system targets are interrelated, we see safe as primarily referring to a stable Earth system and just targets as being associated with meeting human needs and reducing exposure to risks. To align safe and just dimensions, we propose to address the equity dimensions of each safe target for Earth system regulating systems and processes. The more stringent of the safe or just target ranges then defines the corridor. Identifying levers of social transformation aimed at meeting the safe and just targets and challenges associated with translating the corridor to actors at multiple scales present scope for future work.
Rockström, Johan; Gupta, Joyeeta; Lenton, Timothy M.; Qin, Dahe; Lade, Steven J.; Abrams, Jesse F.; Jacobson, Lisa; Rocha, Juan C.; Zimm, Caroline; Bai, Xuemei; Bala, Govindasamy; Bringezu, Stefan; Broadgate, Wendy; Bunn, Stuart E.; DeClerck, Fabrice; Ebi, Kristie L.; Gong, Peng; Gordon, Chris; Kanie, Norichika; Liverman, Diana M.; Nakicenovic, Nebojsa; Obura, David; Ramanathan, Veerabhadran; Verburg, Peter H.; van Vuuren, Detlef P.; Winkelmann, Ricarda (2021):
Identifying a safe and just corridor for people and the planet.
In: Earth's Future. DOI: 10.1029/2020EF001866
Dieser Bericht gibt einen ersten Überblick über wesentliche Merkmale und Trends der deutschen „biobasierten Ökonomie“ im nationalen und internationalen Kontext. In Übereinstimmung mit der Nationalen Bioökonomiestrategie basiert der Bericht auf einer praktikablen Definition von Bioökonomie, indem alle Aktivitäten einbezogen werden, die mit der Produktion von Biomasse in Landwirtschaft, Fortwirtschaft, Fischerei, im Garten- und Landschaftsbau sowie den dort und in der Abfallwirtschaft anfallenden biogenen Rest- und Abfallstoffen und ihrer Verwendung im verarbeitenden Gewerbe, bei Dienstleistungen und im Konsum verbunden sind. Der Bericht gliedert sich in eine Übersicht zu biogenen Stoffströmen (Kap. 2), Kerndaten sozioökonomischer Entwicklung (Kap. 3), Trends und Treiber der Bioökonomie (Kap. 4) und eine Gesamteinschätzung der ökologischen Fußabdrücke (Kap. 5).