Veröffentlichungen
D. Knees, P. Neff, and O. Sebastian, “A local regularity result for the relaxed micromorphic model based on inner variations,” Journal of Mathematical Analysis and Applications, vol. 519, no. 2, p. 126806, 2023. http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2022.126806 |
D. Knees, A. Schröder, and V. Shcherbakov, “Fully discrete approximation schemes for rate-independent crack evolution,” Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol. 380, no. 2236, p. 20210361, 2022. http://dx.doi.org/10.1098/rsta.2021.0361 |
R. Herzog, D. Knees, C. Meyer, M. Sievers, A. Stötzner, and S. Thomas, “Rate-Independent Systems and Their Viscous Regularizations: Analysis, Simulation, and Optimal Control,” Non-Smooth and Complementarity-Based Distributed Parameter Systems, vol. 172, pp. 121–144, 2022. http://dx.doi.org/10.1080/00207578.2021.1999773 |
D. Knees and C. Zanini, “Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads,” Discrete and Continuous Dynamical Systems - Series S, vol. 14, no. 1, pp. 121–149, 2021. http://dx.doi.org/10.3934/dcdss.2020332 |
D. Knees and V. Shcherbakov, “A penalized version of the local minimization scheme for rate-independent systems,” Applied Mathematics Letters, vol. 115, p. 106954, 2021. http://dx.doi.org/10.1016/j.aml.2020.106954 |
D. Knees, R. Rossi, and C. Zanini, “Balanced viscosity solutions to a rate-independent system for damage,” European Journal of Applied Mathematics, vol. 146, pp. 1–59, 2018. http://dx.doi.org/10.1017/S0956792517000407 |
D. Knees, “Convergence analysis of time-discretisation schemes for rate-independent systems,” ESAIM: Control, Optimisation and Calculus of Variations, p. TBD, 2018. http://dx.doi.org/10.1051/cocv/2018048 |
D. Knees and M. Negri, “Convergence of alternate minimization schemes for phase-field fracture and damage.,” Mathematical Models and Methods in Applied Sciences, vol. 27, no. 9, pp. 1743–1794, 2017. http://dx.doi.org/10.1142/S0218202517500312 https://cvgmt.sns.it/paper/2832/ |
H. Hanke and D. Knees, “A phase-field damage model based on evolving microstructure,” Asymptotic Analysis, vol. 101, no. 3, pp. 149–180, 2017. http://dx.doi.org/10.3233/ASY-161396 |
R. Haller-Dintelmann, A. Jonsson, D. Knees, and J. Rehberg, “Elliptic and parabolic regularity for second-order divergence operators with mixed boundary conditions,” Mathematical Methods in the Applied Sciences, vol. 39, no. 17, pp. 5007–5026, 2016. http://dx.doi.org/10.1002/mma.3484 |
D. Knees, R. Rossi, and C. Zanini, “A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains,” Nonlinear Analysis: Real World Applications, vol. 24, pp. 126–162, 2015. http://dx.doi.org/10.1016/j.nonrwa.2015.02.001 |
H. Hanke and D. Knees, “Homogenization of elliptic systems with non-periodic, state-dependent coefficients,” Asymptotic Analysis, vol. 92, no. 3–4, pp. 203–234, 2015. http://dx.doi.org/10.3233/ASY-141271 |
D. Knees, R. Kornhuber, C. Kraus, A. Mielke, and J. Sprekels, “C3: Phase transformation and separation in solids,” in MATHEON – Mathematics for Key Technologies, P. Deuflhard, M. Grötschel, D. Hömberg, U. Horst, J. Kramer, V. Mehrmann, K. Polthier, F. Schmidt, C. Schütte, M. Skutella, and J. Sprekels, Eds. Zürich: European Mathematical Society Publishing House, 2014, pp. 189–203. |
D. Knees, R. Rossi, and C. Zanini, “A vanishing viscosity approach to a rate-independent damage model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 4, pp. 565–616, 2013. http://dx.doi.org/10.1142/S021820251250056X |
D. Knees and A. Schröder, “Computational aspects of quasi-static crack propagation,” Discrete and Continuous Dynamical Systems. Series S, vol. 6, no. 1, pp. 63–99, 2013. http://dx.doi.org/10.3934/dcdss.2013.6.63 |
D. Knees, A. Fiaschi, and S. Reichelt, “Global higher integrability of minimizers of variational problems with mixed boundary conditions,” Journal of Mathematical Analysis and Applications, vol. 401, no. 1, pp. 269–288, 2013. http://dx.doi.org/10.1016/j.jmaa.2012.11.040 |
D. Knees, A. Fiaschi, and U. Stefanelli, “Young-measure quasi-static damage evolution,” Archive for Rational Mechanics and Analysis, vol. 203, no. 2, pp. 415–453, 2012. http://dx.doi.org/10.1007/s00205-011-0474-3 |
D. Knees and A. Schröder, “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints.,” Mathematical Methods in the Applied Sciences, vol. 35, no. 15, pp. 1859–1884, 2012. http://dx.doi.org/10.1002/mma.2598 |
D. Knees, “Global spatial regularity for a regularized elasto-plastic model,” GAMM Mitteilungen, vol. 34, no. 1, pp. 21–27, 2011. http://dx.doi.org/10.1002/gamm.201110003 |
D. Knees, “On global spatial regularity and convergence rates for time-dependent elasto-plasticity.,” Mathematical Models and Methods in Applied Sciences, vol. 20, no. 10, pp. 1823–1858, 2010. http://dx.doi.org/10.1142/S0218202510004805 |
P. G. Gruber, D. Knees, S. Nesenenko, and M. Thomas, “Analytical and numerical aspects of time-dependent models with internal variables.,” Journal of Applied Mathematics and Mechanics, vol. 90, no. 10–11, pp. 861–902, 2010. http://dx.doi.org/10.1002/zamm.200900387 |
D. Knees, C. Zanini, and A. Mielke, “Crack growth in polyconvex materials,” Physica D: Nonlinear Phenomena, vol. 239, no. 15, pp. 1470–1484, 2010. http://dx.doi.org/10.1016/j.physd.2009.02.008 |
D. Knees, “On global spatial regularity in elasto-plasticity with linear hardening,” Calculus of Variations and Partial Differential Equations, vol. 36, no. 4, pp. 611–625, 2009. http://dx.doi.org/10.1007/s00526-009-0247-0 |
D. Knees and A. Mielke, “Energy release rate for cracks in finite-strain elasticity.,” Mathematical Models and Methods in Applied Sciences, vol. 31, no. 5, pp. 501–528, 2008. http://dx.doi.org/10.1002/mma.922 |
D. Knees, A. Mielke, and C. Zanini, “On the inviscid limit of a model for crack propagation.,” Mathematical Models and Methods in Applied Sciences, vol. 18, no. 9, pp. 1529–1569, 2008. http://dx.doi.org/10.1142/S0218202508003121 |
P. Neff and D. Knees, “Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity,” SIAM Journal on Mathematical Analysis, vol. 40, no. 1, pp. 21–43, 2008. http://dx.doi.org/10.1137/070695824 |
D. Knees, A. Mielke, and C. Zanini, “On rate independent models for crack propagation,” Proceedings in Applied Mathematics & Mechanics, vol. 8, no. 1, pp. 10213–10214, 2008. http://dx.doi.org/10.1002/pamm.200810213 |
D. Knees, “Global stress regularity of convex and some nonconvex variational problems,” Annali di Matematica Pura ed Applicata. Serie Quarta, vol. 187, no. 1, pp. 157–184, 2008. http://dx.doi.org/10.1007/s10231-006-0039-5 |
D. Knees and A.-M. Sändig, “Regularity of elastic fields in composites.,” in Multifield problems in solid and fluid mechanics, R. Helmig, A. Mielke, and B. I. Wohlmuth, Eds. Berlin: Springer, 2006, pp. 331–360. http://dx.doi.org/10.1007/978-3-540-34961-7_10 |
D. Knees, “Global regularity of the elastic fields of a power-law model on Lipschitz domains,” Mathematical Models and Methods in Applied Sciences, vol. 29, no. 12, pp. 1363–1391, 2006. http://dx.doi.org/10.1002/mma.727 |
D. Knees, “Griffith-formula and J-integral for a crack in a power-law hardening material,” Mathematical Models and Methods in Applied Sciences, vol. 16, no. 11, pp. 1723–1749, 2006. http://dx.doi.org/10.1142/S0218202506001698 |
D. Knees and A.-M. Sändig, “Stress behaviour in a power-law hardening material,” in Proceedings of the Conference held in Milvoy, Bohemiam-Moravian Uplands, May 28-June 2, 2004, P. Drábek and J. Rákosník, Eds. Prag: Mathematical Institute of the Academy of Sciences of the Czech Republic, 2005, pp. 134–151. |
D. Knees, “On the Regularity of Weak Solutions of Quasi-Linear Elliptic Transmission Problems on Polyhedral Domains,” Zeitschrift für Analysis und ihre Anwendungen, vol. 23, no. 3, pp. 509–546, 2004. http://dx.doi.org/10.4171/ZAA/1209 https://www.mathematik.uni-kassel.de/~dknees/publications/knees03_2.pdf |
D. Knees, “Regularity results for transmission problems of linear elasticity on polyhedral domains.,” in Analysis and Simulation of Multifield Problems, W. L. Wendland and M. Efendiev, Eds. Berlin: Springer, 2003, pp. 221–226. |
Die Konfiguration der WebView liefert keine Inhalte
Meyer, C., Knees, D., Herzog, R. (Eds.), 2018. Nonsmooth Models in Continuum Mechanics - Analysis and Optimization, GAMM-Mitteilungen. Wiley-VCH GmbH, Weinheim. https://doi.org/10.1002/gamm.201730001 |
Kaiser, H.-C., Knees, D., Mielke, A., Rehberg, J., Rocca, E., Thomas, M., Valdinoci, E. (Eds.), 2017. Special issue on PDE 2015: Theory and applications of partial differential equations, Discrete and Continuous Dynamical Systems - Series S. American Institute of Mathematical Sciences, Springfield, USA. https://doi.org/10.3934/dcdss.201704i |
Klein, O., Knees, D., Dimian, M., Rachinskii, D., Gurevich, P., Tikhomirov, S. (Eds.), 2016. MURPHYS-HSFS-2014: 7th international workshop on MUlti-Rate Processes & HYSteresis (MURPHYS) and the 2nd International Workshop on Hysteresis and Slow-Fast Systems (HSFS), Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany, April 7-11, 2014., Journal of Physics: Conference Series. IOP Publishing, Bristol. https://doi.org/10.1088/1742-6596/727/1/011001 |