Sitemap News Detail

28.05.2024 | Kol­­lo­qui­um | Institut für Baustatik und Baudynamik (IBSD)

Forschungskolloquium: Thermomechanical analysis of strain recovery in shape memory alloys under variable non-isothermal conditions

Bild: Stefan Descher

Im Rahmen des Forschungskolloquiums für Abschlussarbeitende, Doktoranden und Habilitanden laden wir herzlich ein zum Vortrag:

Dr.-Ing. Stefan Descher:

"Thermomechanical analysis of strain recovery in shape memory alloys under variable non-isothermal conditions"

Diese Forschungsarbeit ist in Kooperation mit Herrn Dr.-Ing. Philipp Krooß und Herrn Felix Ewald M.Sc. vom Institut für Werkstofftechnik des Fachbereichs Maschinenbau entstanden.

Dienstag, den 28.05.2024, um 16.30 Uhr in Raum 3516, Mö 7

Wir freuen uns auf Ihr Kommen!

Abstract

A major reason for the application of shape memory alloys (SMAs) is to make use of the one-way effect. It allows recovering plastic strains that are mechanically brought into the material by thermal activation due to heating. The underlying process is a phase transformation from a martensitic phase (M) to an austenitic phase (A) that occurs in a certain temperature range. It resets the change of microstructure that was introduced mechanically, and therefore, e.g., allows making use of restoring strains. A popular application of SMAs are actuators, often found in aviation and automotive industry, or as smart reinforcements in novel materials of civil engineering. As found out in the preceding thermodynamic studies of the present work, latent heat effects play a key role in this activation process. The heat sink caused by the M-A phase transformation during activation causes an interface of transformation to move through the material. This highly depends on the local heating rate, that is reached during activation. To further study this behavior, in the present work, mechanical coupling is realized. Studies are carried out for a characteristic non-isothermal tension test, as it is performed to record stress-strain-temperature curves. For this purpose, the M-A phase transformation is described by a phenomenological evolution equation, which is solved together with the Cauchy-Fourier equations using the Finite Element Method.