Bachelor / Master Theses (BAMA)

Module: FB16 - 9018.17

Organization:

  • Supervision:
    Prof. Dr. O. Stursberg and Scientific staff of the group
  • Extent
    Bachelor thesis / Master thesis: length according to the examination regulations of the relevant degree program; each thesis comprises obligatory the preparation of written document (the thesis) and an oral presentation within the scientific colloquium of the lab
     
  • Content:
    For a defined problem of Control and System Theory, the student studies the relevant literature, develops an own solution, often implements a corresponding control algorithm, evaluates the solution, and prepares a written and oral presentation of the results.
     
  • Prerequisites:
    • necessary for the B.Sc. thesis: successful completion of the courses Grundlagen der RegelungstechnikLineare und Nichtlineare Regelungssysteme, Matlab Grundlagen; depending on the chosen subject, the course Discrete Event Systems and Control can be important, too.
    • necessary for the M.Sc. thesis: completion of the Bachelor program (ideally with a focus on control systems), and successful completion of the courses Lineare Optimale Regelung, Adaptive and Predictive Control; depending on the chosen subject, also the following courses should have been completed: Optimization Methods, Robust and Optimal Control, Hybrid and Networked Control Systems.
  • Recommendation:
    For students of the B.Sc. program in Electrical Engineering, the duration of the B.Sc. thesis is only 9 weeks. To enable a more rigorous study of a topic, it is recommended to thematically couple the B.Sc. thesis with the preceding project work (duration as well 9 weeks).

Open Topics

Topics of the thesis (B.Sc. / M.Sc.) are typically related to the research projects of the group. For inquiries on currently open topcis, interested students should contact the secretary of the group using: rst(at)uni-kassel.de

Please provide the following information:

  • degree program,
  • number of completed semesters in the program,
  • completed courses offered by Control and System Theory
  • topic(s) of interest (possibly with reference to the themes listed here)
  • desired starting date

Times

The starting dates can be defined flexibly upon requests.

Recently Completed Theses

N. Hanke M.Sc. Synchronisation vernetzter Oszillatoren auf Basis von Modellen schltender affiner Systeme
P. Stowitz M.Sc. Erreichbarkeitsanalyse zur Sicherheitsüberprüfung von Reglern, die durch neuronale Netzwerke repräsentiert werden.
T. Trummel M.Sc. Optimale Synchronisierung von vernetzten heterogenen Oszillatoren durch angepasste Kopplung
J. Arend M.Sc. Optimale Regelung von Bodenlagern via Deep Reinforcement Learning
E. Boyar M.Sc. Hindernisvermeidung mit Hilfe von adaptiven Straffunktionen
J. Liao M.Sc. Effiziente und robuste prädiktive Regelung mit Ausgangsrückführung und zeitvariablen Zustandsbeschränkungen
D. Hieb M.Sc. Deep Reinforcement Learning mit garantierter Einhaltung von Beschränkungen für zeitdiskrete lineare Systeme mit additiver Störung
N. Yunping M.Sc. Robust control approaches to limit the spread of the Corona virus represented by the SIS model
M. Neumann M.Sc. Indifikation von 2D-Temperaturfeldern bei der additiven Fertigung
M. Omayrat M.Sc. Modeling and Control of Rumor Spreading in Social Networks
V. Schmidtke M.Sc. Verteilte Modellprädiktive Regelung für vernetzte Systeme mit zeitlich veränderlicher Kopplung der Systemdynamiken - Distributed Model Predictive Control for Networked Systems with Time-Varying Coupling of the Dynamics
A. Wakkaf M.Sc. Untersuchung des Einflusses der Abtastzeit auf die Schätzung datengetriebener Prozessmmodelle zum Zweck der Anomaliedetektion
D.U. Lind B.Sc. Auf neuronalen Netzen basierende Fehlererkennung für Gebäudeheizungssysteme
P. M. Karl B.Sc. Studying the Performance of ADMM for Networked Systems
A. Metzker B.Sc. Regelung eines mobilen inversen Pendels via Kommunikationskanal
M. Rüger B.Sc. Modellprediktive Regelung des Temperaturprofils in additiven Feritigungsprozessen
A. Siewert B.Sc. Effizientes On-line Lernen von optimalen Policies/Strategien für die Regelung