Dr.-Ing. Robert Fiedler
Ehemaliger wissenschaftlicher Mitarbeiter
Dissertation
Sommersemester 2020
Übung zur Vorlesung Einführung in die Mehrkörperdynamik
Wintersemester 2019/2020
Übung zur Vorlesung Lineare Schwingungen
Sommersemester 2019
Übung zur Vorlesung Einführung in die Mehrkörperdynamik
Wintersemester 2018/2019
Übung zur Vorlesung Nichtlineare Schwingungen
Sommersemester 2018
Übung zur Vorlesung Technische Schwingungslehre
Wintersemester 2017/2018
Übung zur Vorlesung Maschinen- und Rotordynamik
Sommersemester 2017
Übung zur Vorlesung Dynamik (für B.Sc. Mechatronik)
Wintersemester 2016/2017
Übung zur Vorlesung Lineare Schwingungen diskreter und kontinuierlicher Systeme
A) Veröffentlichungen in Zeitschriften
- Bäuerle, S., Fiedler, R., & Hetzler, H. (2022). An Engineering Perspective on the Numerics of Quasi-Periodic Oscillations - A Comparison of two Hyper-Time Approaches based on a unified Framework. Nonlinear Dynamics. doi.org/10.1007/s11071-022-07407-5
B) Tagungsberichte/ Proceedings
- Fiedler, R., & Hetzler, H. (2019). An Approach to Analyze the Stability of Quasiperiodic Motions with the Method of Characteristics.Proceedings of 8th GACM Colloquium on Computational Mechanics: For Young Scientists From Academia and Industry August 28th–30th, 2019 University of Kassel, Germany. kassel university press GmbH.
- Fiedler, R., & Hetzler, H. (2019). Quasiperiodic Motions in Unbalanced Rotor Systems with simultaneous Self- or Forced Excitation.SIRM 2019 - 13th International Conference on Dynamics of Rotating Machines (Copenhagen, Denmark)
- Fiedler, R., & Hetzler, H. (2018). Numerically Approximated Lyapunov-exponents of Quasiperiodic Motions. In MATEC Web of Conferences. (Vol. 241, p. 01009). EDP Sciences.
- Fiedler, R., & Hetzler, H. (2018). Stability Analysis of Numerically approximated Quasiperiodic Motions.PAMM, 18(1), e201800189.
- Fiedler, R., & Hetzler, H. (2017). Numerical approximation of invariant manifolds for dynamical systems with simultaneous self-and forced excitation. Proceedings of the 9th European Nonlinear Dynamics Conference (Budapest).
- Fiedler, R., & Hetzler, H. (2017). On the numerical approximation of invariant manifolds for quasiperiodic motions.PAMM, 17(1), 371-372
C) Dissertation
- Fiedler, R. (2021). Numerical Analysis of Invariant Manifolds Characterized by Quasi-Periodic Oscillations of Nonlinear Systems. Kassel University Press